Download Free Behavior Trees In Robotics And Ai Book in PDF and EPUB Free Download. You can read online Behavior Trees In Robotics And Ai and write the review.

Behavior Trees (BTs) provide a way to structure the behavior of an artificial agent such as a robot or a non-player character in a computer game. Traditional design methods, such as finite state machines, are known to produce brittle behaviors when complexity increases, making it very hard to add features without breaking existing functionality. BTs were created to address this very problem, and enables the creation of systems that are both modular and reactive. Behavior Trees in Robotics and AI: An Introduction provides a broad introduction as well as an in-depth exploration of the topic, and is the first comprehensive book on the use of BTs. This book introduces the subject of BTs from simple topics, such as semantics and design principles, to complex topics, such as learning and task planning. For each topic, the authors provide a set of examples, ranging from simple illustrations to realistic complex behaviors, to enable the reader to successfully combine theory with practice. Starting with an introduction to BTs, the book then describes how BTs relate to, and in many cases, generalize earlier switching structures, or control architectures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. The book then presents a set of important extensions and provides a set of tools for formally analyzing these extensions using a state space formulation of BTs. With the new analysis tools, the book then formalizes the descriptions of how BTs generalize earlier approaches and shows how BTs can be automatically generated using planning and learning. The final part of the book provides an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion. This book targets a broad audience, including both students and professionals interested in modeling complex behaviors for robots, game characters, or other AI agents. Readers can choose at which depth and pace they want to learn the subject, depending on their needs and background.
This is the first book on Behavior Trees (BTs) in robotics and AI.
Behavior Trees (BTs) provide a way to structure the behavior of an artificial agent such as a robot or a non-player character in a computer game. Traditional design methods, such as finite state machines, are known to produce brittle behaviors when complexity increases, making it very hard to add features without breaking existing functionality. BTs were created to address this very problem, and enables the creation of systems that are both modular and reactive. Behavior Trees in Robotics and AI: An Introduction provides a broad introduction as well as an in-depth exploration of the topic, and is the first comprehensive book on the use of BTs. This book introduces the subject of BTs from simple topics, such as semantics and design principles, to complex topics, such as learning and task planning. For each topic, the authors provide a set of examples, ranging from simple illustrations to realistic complex behaviors, to enable the reader to successfully combine theory with practice. Starting with an introduction to BTs, the book then describes how BTs relate to, and in many cases, generalize earlier switching structures, or control architectures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. The book then presents a set of important extensions and provides a set of tools for formally analyzing these extensions using a state space formulation of BTs. With the new analysis tools, the book then formalizes the descriptions of how BTs generalize earlier approaches and shows how BTs can be automatically generated using planning and learning. The final part of the book provides an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion. This book targets a broad audience, including both students and professionals interested in modeling complex behaviors for robots, game characters, or other AI agents. Readers can choose at which depth and pace they want to learn the subject, depending on their needs and background.
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. - Covers a broad range of interdisciplinary topics between mathematics, circuits, realizations, and practical applications related to nonlinear dynamical systems, nanotechnology, analog and digital systems, computer science and artificial intelligence - Presents recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) - Includes interesting applications of mem-elements in nonlinear dynamical systems, analog and digital systems, neuromorphic circuits, computer science and artificial intelligence
This book is aimed at new ROS users who want to go beyond the Beginner Tutorials and create some working ROS applications, either in simulation or on a real robot like the TurtleBot. The book provides step-by-step explanations of a number of ROS programming examples using code that can be downloaded from the accompanying ros-by-example repository.
Unreal Engine is a powerful game development engine that provides rich functionalities to create 2D and 3D games. If you want to use AI to extend the play-life of your games and make them more challenging and fun, this book is for you. It will help you break down AI into simple concepts to give you a fundamental understanding of each of the topics.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
This book presents the most recent and advanced techniques for creating autonomous AI systems capable of planning and acting effectively.
This book brings together papers presented at the 2020 International Conference on Communications, Signal Processing, and Systems, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from communications, signal processing and systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD and DOE).
Human-Machine Shared Contexts considers the foundations, metrics, and applications of human-machine systems. Editors and authors debate whether machines, humans, and systems should speak only to each other, only to humans, or to both and how. The book establishes the meaning and operation of "shared contexts between humans and machines; it also explores how human-machine systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems composed of humans and machines. This book explores how user interventions may improve the context for autonomous machines operating in unfamiliar environments or when experiencing unanticipated events; how autonomous machines can be taught to explain contexts by reasoning, inferences, or causality, and decisions to humans relying on intuition; and for mutual context, how these machines may interdependently affect human awareness, teams and society, and how these "machines" may be affected in turn. In short, can context be mutually constructed and shared between machines and humans? The editors are interested in whether shared context follows when machines begin to think, or, like humans, develop subjective states that allow them to monitor and report on their interpretations of reality, forcing scientists to rethink the general model of human social behavior. If dependence on machine learning continues or grows, the public will also be interested in what happens to context shared by users, teams of humans and machines, or society when these machines malfunction. As scientists and engineers "think through this change in human terms," the ultimate goal is for AI to advance the performance of autonomous machines and teams of humans and machines for the betterment of society wherever these machines interact with humans or other machines. This book will be essential reading for professional, industrial, and military computer scientists and engineers; machine learning (ML) and artificial intelligence (AI) scientists and engineers, especially those engaged in research on autonomy, computational context, and human-machine shared contexts; advanced robotics scientists and engineers; scientists working with or interested in data issues for autonomous systems such as with the use of scarce data for training and operations with and without user interventions; social psychologists, scientists and physical research scientists pursuing models of shared context; modelers of the internet of things (IOT); systems of systems scientists and engineers and economists; scientists and engineers working with agent-based models (ABMs); policy specialists concerned with the impact of AI and ML on society and civilization; network scientists and engineers; applied mathematicians (e.g., holon theory, information theory); computational linguists; and blockchain scientists and engineers. - Discusses the foundations, metrics, and applications of human-machine systems - Considers advances and challenges in the performance of autonomous machines and teams of humans - Debates theoretical human-machine ecosystem models and what happens when machines malfunction