Download Free Bayesian Cost Effectiveness Analysis With The R Package Bcea Book in PDF and EPUB Free Download. You can read online Bayesian Cost Effectiveness Analysis With The R Package Bcea and write the review.

The book provides a description of the process of health economic evaluation and modelling for cost-effectiveness analysis, particularly from the perspective of a Bayesian statistical approach. Some relevant theory and introductory concepts are presented using practical examples and two running case studies. The book also describes in detail how to perform health economic evaluations using the R package BCEA (Bayesian Cost-Effectiveness Analysis). BCEA can be used to post-process the results of a Bayesian cost-effectiveness model and perform advanced analyses producing standardised and highly customisable outputs. It presents all the features of the package, including its many functions and their practical application, as well as its user-friendly web interface. The book is a valuable resource for statisticians and practitioners working in the field of health economics wanting to simplify and standardise their workflow, for example in the preparation of dossiers in support of marketing authorisation, or academic and scientific publications.
Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.
This book provides an introduction to decision analytic cost-effectiveness modelling, giving the theoretical and practical knowledge required to design and implement analyses that meet the methodological standards of health technology assessment organisations. The book guides you through building a decision tree and Markov model and, importantly, shows how the results of cost-effectiveness analyses are interpreted. Given the complex nature of cost-effectiveness modelling and the often unfamiliar language that runs alongside it, we wanted to make this book as accessible as possible whilst still providing a comprehensive, in-depth, practical guide that reflects the state of the art – that includes the most recent developments in cost-effectiveness modelling. Although the nature of cost effectiveness modelling means that some parts are inevitably quite technical, across the 13 chapters we have broken down explanations of theory and methods into bite-sized pieces that you can work through at your own pace; we have provided explanations of terms and methods as we use them. Importantly, the exercises and online workbooks allow you to test your skills and understanding as you go along.
This book provides the reader with a comprehensive set of instructions and examples of how to perform an economic evaluation of a health intervention, focusing solely on cost-effectiveness analysis in healthcare.
This open access book is the first published guide about how to analyse data produced by the EQ-5D, one of the most widely used Patient Reported Outcomes questionnaires world wide. The authors provide practical, clear and comprehensive guidance in five concise chapters. Following an overview of the EQ-5D and its analysis, we describe how the questionnaire data – the EQ-5D profile and EQ VAS – can be analysed in different ways to generate important insights into peoples’ health. We then show how the value sets which accompany the EQ-5D can be applied to summarise patients’ data. The final chapter deals with advanced topics, including the use of Minimally Important Differences, case-mix adjustment, mapping, and more. This book is essential for those new to analyzing EQ-5D data and will be also be valuable for those with more experience. The methods can be applied to any EQ-5D instrument (for example, the three- and five-level and Youth versions) and many of the methods described will be equally relevant to other Patient Reported Outcomes instruments.
This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.
Cost-effectiveness analysis is becoming an increasingly important tool for decision making in the health systems. Cost-Effectiveness of Medical Treatments formulates the cost-effectiveness analysis as a statistical decision problem, identifies the sources of uncertainty of the problem, and gives an overview of the frequentist and Bayesian statistical approaches for decision making. Basic notions on decision theory such as space of decisions, space of nature, utility function of a decision and optimal decisions, are explained in detail using easy to read mathematics. Features Focuses on cost-effectiveness analysis as a statistical decision problem and applies the well-established optimal statistical decision methodology. Discusses utility functions for cost-effectiveness analysis. Enlarges the class of models typically used in cost-effectiveness analysis with the incorporation of linear models to account for covariates of the patients. This permits the formulation of the group (or subgroup) theory. Provides Bayesian procedures to account for model uncertainty in variable selection for linear models and in clustering for models for heterogeneous data. Model uncertainty in cost-effectiveness analysis has not been considered in the literature. Illustrates examples with real data. In order to facilitate the practical implementation of real datasets, provides the codes in Mathematica for the proposed methodology. The motivation for the book is to make the achievements in cost-effectiveness analysis accessible to health providers, who need to make optimal decisions, to the practitioners and to the students of health sciences. Elías Moreno is Professor of Statistics and Operational Research at the University of Granada, Spain, Corresponding Member of the Royal Academy of Sciences of Spain, and elect member of ISI. Francisco José Vázquez-Polo is Professor of Mathematics and Bayesian Methods at the University of Las Palmas de Gran Canaria, and Head of the Department of Quantitative Methods. Miguel Ángel Negrín is Senior Lecturer in the Department of Quantitative Methods at the ULPGC. His main research topics are Bayesian methods applied to Health Economics, economic evaluation and cost-effectiveness analysis, meta-analysis and equity in the provision of healthcare services.
Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.
In financially constrained health systems across the world, increasing emphasis is being placed on the ability to demonstrate that health care interventions are not only effective, but also cost-effective. This book deals with decision modelling techniques that can be used to estimate the value for money of various interventions including medical devices, surgical procedures, diagnostic technologies, and pharmaceuticals. Particular emphasis is placed on the importance of the appropriate representation of uncertainty in the evaluative process and the implication this uncertainty has for decision making and the need for future research. This highly practical guide takes the reader through the key principles and approaches of modelling techniques. It begins with the basics of constructing different forms of the model, the population of the model with input parameter estimates, analysis of the results, and progression to the holistic view of models as a valuable tool for informing future research exercises. Case studies and exercises are supported with online templates and solutions. This book will help analysts understand the contribution of decision-analytic modelling to the evaluation of health care programmes. ABOUT THE SERIES: Economic evaluation of health interventions is a growing specialist field, and this series of practical handbooks will tackle, in-depth, topics superficially addressed in more general health economics books. Each volume will include illustrative material, case histories and worked examples to encourage the reader to apply the methods discussed, with supporting material provided online. This series is aimed at health economists in academia, the pharmaceutical industry and the health sector, those on advanced health economics courses, and health researchers in associated fields.
The question of how to allocate scarce medical resources has become an important public policy issue in recent decades. Cost-utility analysis is the most commonly used method for determining the allocation of these resources, but this book counters the argument that overcoming its inherent imbalances is simply a question of implementing methodological changes. The Economics of Resource Allocation in Health Care represents the first comprehensive analysis of equity weighting in health care resource allocation that offers a fundamental critique of its basic framework. It offers a critique of health economics, putting the discourse on economic evaluation into its broader socio-political context. Such an approach broadens the debate on fairness in health economics and ties it in with deeper-rooted problems in moral philosophy. Ultimately, this interdisciplinary study calls for the adoption of a fundamentally different paradigm to address the distribution of scarce medical resources. This book will be of interest to policy makers, health care professionals, and post-graduate students looking to broaden their understanding of the economics of the health care system.