Download Free Batch Effects And Noise In Microarray Experiments Book in PDF and EPUB Free Download. You can read online Batch Effects And Noise In Microarray Experiments and write the review.

Batch Effects and Noise in Microarray Experiments: Sources and Solutions looks at the issue of technical noise and batch effects in microarray studies and illustrates how to alleviate such factors whilst interpreting the relevant biological information. Each chapter focuses on sources of noise and batch effects before starting an experiment, with examples of statistical methods for detecting, measuring, and managing batch effects within and across datasets provided online. Throughout the book the importance of standardization and the value of standard operating procedures in the development of genomics biomarkers is emphasized. Key Features: A thorough introduction to Batch Effects and Noise in Microrarray Experiments. A unique compilation of review and research articles on handling of batch effects and technical and biological noise in microarray data. An extensive overview of current standardization initiatives. All datasets and methods used in the chapters, as well as colour images, are available on www.the-batch-effect-book.org, so that the data can be reproduced. An exciting compilation of state-of-the-art review chapters and latest research results, which will benefit all those involved in the planning, execution, and analysis of gene expression studies.
This book presents practical approaches for the analysis of data from gene expression micro-arrays. It describes the conceptual and methodological underpinning for a statistical tool and its implementation in software. The book includes coverage of various packages that are part of the Bioconductor project and several related R tools. The materials presented cover a range of software tools designed for varied audiences.
Batch Effects and Noise in Microarray Experiments: Sources and Solutions looks at the issue of technical noise and batch effects in microarray studies and illustrates how to alleviate such factors whilst interpreting the relevant biological information. Each chapter focuses on sources of noise and batch effects before starting an experiment, with examples of statistical methods for detecting, measuring, and managing batch effects within and across datasets provided online. Throughout the book the importance of standardization and the value of standard operating procedures in the development of genomics biomarkers is emphasized. Key Features: A thorough introduction to Batch Effects and Noise in Microrarray Experiments. A unique compilation of review and research articles on handling of batch effects and technical and biological noise in microarray data. An extensive overview of current standardization initiatives. All datasets and methods used in the chapters, as well as colour images, are available on www.the-batch-effect-book.org, so that the data can be reproduced. An exciting compilation of state-of-the-art review chapters and latest research results, which will benefit all those involved in the planning, execution, and analysis of gene expression studies.
The analysis of gene expression profile data from DNA micorarray studies are discussed in this book. It provides a review of available methods and presents it in a manner that is intelligible to biologists. It offers an understanding of the design and analysis of experiments utilizing microarrays to benefit scientists. It includes an Appendix tutorial on the use of BRB-ArrayTools and step by step analyses of several major datasets using this software which is available from the National Cancer Institute.
Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies
A complete and well-balanced introduction to modern experimental design Using current research and discussion of the topic along with clear applications, Modern Experimental Design highlights the guiding role of statistical principles in experimental design construction. This text can serve as both an applied introduction as well as a concise review of the essential types of experimental designs and their applications. Topical coverage includes designs containing one or multiple factors, designs with at least one blocking factor, split-unit designs and their variations as well as supersaturated and Plackett-Burman designs. In addition, the text contains extensive treatment of: Conditional effects analysis as a proposed general method of analysis Multiresponse optimization Space-filling designs, including Latin hypercube and uniform designs Restricted regions of operability and debarred observations Analysis of Means (ANOM) used to analyze data from various types of designs The application of available software, including Design-Expert, JMP, and MINITAB This text provides thorough coverage of the topic while also introducing the reader to new approaches. Using a large number of references with detailed analyses of datasets, Modern Experimental Design works as a well-rounded learning tool for beginners as well as a valuable resource for practitioners.
Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.
A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis, including analysis of variance, multiple regression, effect size measures and newly developed methods of communicating statistical results. Subsequent chapters feature newly added methods for the analysis of experiments with ordered treatments, including two parametric and nonparametric monotone analyses as well as approaches based on the robust general linear model and reversed ordinal logistic regression. Four groundbreaking chapters on single-case designs introduce powerful new analyses for simple and complex single-case experiments. This Second Edition also features coverage of advanced methods including: Simple and multiple analysis of covariance using both the Fisher approach and the general linear model approach Methods to manage assumption departures, including heterogeneous slopes, nonlinear functions, dichotomous dependent variables, and covariates affected by treatments Power analysis and the application of covariance analysis to randomized-block designs, two-factor designs, pre- and post-test designs, and multiple dependent variable designs Measurement error correction and propensity score methods developed for quasi-experiments, observational studies, and uncontrolled clinical trials Thoroughly updated to reflect the growing nature of the field, Analysis of Covariance and Alternatives is a suitable book for behavioral and medical scineces courses on design of experiments and regression and the upper-undergraduate and graduate levels. It also serves as an authoritative reference work for researchers and academics in the fields of medicine, clinical trials, epidemiology, public health, sociology, and engineering.
This thorough volume provides an in-depth introduction to and discussion of microRNAs (miRs) and their targets, miR functions, and computational techniques applied in miR research, thus serving the need for a comprehensive book focusing on miR target genes, miR regulation mechanisms, miR functions performed in various human diseases, and miR databases/knowledgebases. Without prior knowledge of the area of study, computational biologists, computer scientists, bioinformaticians, bench biologists, as well as clinical investigators will find it easy to follow the techniques in this collection. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that ensures successful results. Accessible and practical, Bioinformatics in MicroRNA Research functions as an ideal guide for researchers of all backgrounds to explore this vital area of study.
Since the publishing of the first edition, the methodologies and instrumentation involved in the field of mass spectrometry-based proteomics has improved considerably. Fully revised and expanded, Mass Spectrometry Data Analysis in Proteomics, Second Edition presents expert chapters on specific MS-based methods or data analysis strategies in proteomics. The volume covers data analysis topics relevant for quantitative proteomics, post translational modification, HX-MS, glycomics, and data exchange standards, among other topics. Written in the highly successful Methods in Molecular Biology series format, chapters include brief introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Updated and authoritative, Mass Spectrometry Data Analysis in Proteomics, Second Edition serves as a detailed guide for all researchers seeking to further our knowledge in the field of proteomics.