Download Free Batch Distillation Book in PDF and EPUB Free Download. You can read online Batch Distillation and write the review.

Batch Distillation: Science and Practice is a must have for distillers of all experience levels. Inside you'll find discussions on the history of distillation, distillation chemistry, considerations for purchasing a still and much more. Strickland uses an easy-to-read conversational tone to detail difficult to parse topics such as making distillation cuts, different distillation techniques, how to operate simple and hybrid batch stills and even how to approach the distillation of botanicals for spirits such as gin or absinthe. Throughout the text you'll find anecdotes and real-world wisdom on these and many other topics to help you on your path to making high-calibre spirits.
Most available books in chemical engineering mainly pertain to continuous processes, with batch distillation relegated to a small section. Filling this void in the chemical engineering literature, Batch Distillation: Simulation, Optimal Design, and Control, Second Edition helps readers gain a solid, hands-on background in batch processing. The second edition of this bestseller explores numerous new developments in batch distillation that have emerged since the publication of the first edition. New to the Second Edition Special sections on complex column configurations and azeotropic, extractive, and reactive distillation A chapter on various kinds of uncertainties in batch distillation A chapter covering software packages for batch distillation simulation, design, optimization, and control Separate chapters on complex columns and complex systems Up-to-date references and coverage of recent research articles This edition continues to explain how to effectively design, synthesize, and make operations decisions related to batch processes. Through careful treatments of uncertainty analysis, optimization, and optimal control methods, the author gives readers the necessary tools for making the best decisions in practice. While primarily designed for a graduate course in batch distillation, the text can also be used in undergraduate chemical engineering courses. In addition, researchers and academics faced with batch distillation research problems and practicing chemical engineers tackling problems in actual day-to-day operations will find the book to be a useful reference source.
Distillation: Fundamentals and Principles — winner of the 2015 PROSE Award in Chemistry & Physics — is a single source of authoritative information on all aspects of the theory and practice of modern distillation, suitable for advanced students and professionals working in a laboratory, industrial plants, or a managerial capacity. It addresses the most important and current research on industrial distillation, including all steps in process design (feasibility study, modeling, and experimental validation), together with operation and control aspects. This volume features an extra focus on the conceptual design of distillation. - Winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers - Practical information on the newest development written by recognized experts - Coverage of a huge range of laboratory and industrial distillation approaches - Extensive references for each chapter facilitates further study
The batch distillation process has existed for many centuries. It is perhaps the oldest technology for separating or purifying liquid mixtures and is the most frequently used separation method in batch processes. In the last 25 years, with continuous development of faster computers and sophisticated numerical methods, there have been many published works using detailed mathematical models with rigorous physical property calculations and advanced optimisation techniques to address several important issues, such as selection of column configurations, design, operation, off-cut recycling, use of batch distillation in reactive and extractive modes, etc.Batch Distillation: Design and Operation presents excellent, important contributions of many researchers from around the globe, including those of the author and his co-workers./a
In addition to the three main themes: chemical reactors, distillation columns, and batch processes this volume also addresses some of the new trends in dynamics and control methodology such as model based predictive control, new methods for identification of dynamic models, nonlinear control theory and the application of neural networks to identification and control. Provides a useful reference source of the major advances in the field.
The Definitive, Fully Updated Guide to Separation Process Engineering-Now with a Thorough Introduction to Mass Transfer Analysis Separation Process Engineering, Third Edition, is the most comprehensive, accessible guide available on modern separation processes and the fundamentals of mass transfer. Phillip C. Wankat teaches each key concept through detailed, realistic examples using real data-including up-to-date simulation practice and new spreadsheet-based exercises. Wankat thoroughly covers each of today's leading approaches, including flash, column, and batch distillation; exact calculations and shortcut methods for multicomponent distillation; staged and packed column design; absorption; stripping; and more. In this edition, he also presents the latest design methods for liquid-liquid extraction. This edition contains the most detailed coverage available of membrane separations and of sorption separations (adsorption, chromatography, and ion exchange). Updated with new techniques and references throughout, Separation Process Engineering, Third Edition, also contains more than 300 new homework problems, each tested in the author's Purdue University classes. Coverage includes Modular, up-to-date process simulation examples and homework problems, based on Aspen Plus and easily adaptable to any simulator Extensive new coverage of mass transfer and diffusion, including both Fickian and Maxwell-Stefan approaches Detailed discussions of liquid-liquid extraction, including McCabe-Thiele, triangle and computer simulation analyses; mixer-settler design; Karr columns; and related mass transfer analyses Thorough introductions to adsorption, chromatography, and ion exchange-designed to prepare students for advanced work in these areas Complete coverage of membrane separations, including gas permeation, reverse osmosis, ultrafiltration, pervaporation, and key applications A full chapter on economics and energy conservation in distillation Excel spreadsheets offering additional practice with problems in distillation, diffusion, mass transfer, and membrane separation
Distillation Principles and Practice Second Edition covers all the main aspects of distillation including the thermodynamics of vapor/liquid equilibrium, the principles of distillation, the synthesis of distillation processes, the design of the equipment, and the control of process operation. Most textbooks deal in detail with the principles and laws of distilling binary mixtures. When it comes to multi-component mixtures, they refer to computer software nowadays available. One of the special features of the second edition is a clear and easy understandable presentation of the principles and laws of ternary distillation. The right understanding of ternary distillation is the link to a better understanding of multi-component distillation. Ternary distillation is the basis for a conceptual process design, for separating azeotropic mixtures by using an entrainer, and for reactive distillation, which is a rapidly developing field of distillation. Another special feature of the book is the design of distillation equipment, i.e. tray columns and packed columns. In practice, empirical know-how is preferably used in many companies, often in form of empirical equations, which are not even dimensionally correct. The objective of the proposed book is the derivation of the relevant equations for column design based on first principles. The field of column design is permanently developing with respect to the type of equipment used and the know-how of two-phase flow and interfacial mass transfer.
Reduced time to market, lower production costs, and improved flexibility are critical success factors for batch processes. Their ability to handle variations in feedstock and product specifications has made them key to the operation of multipurpose facilities, and therefore quite popular in the specialty chemical, pharmaceutical, agricultural, and
Providing coverage of design principles for distillation processes, this text contains a presentation of process and equipment design procedures. It also highlights limitations of some design methods, and offers guidance on how to overcome them.
Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.