Download Free Basic Multivariable Calculus Book in PDF and EPUB Free Download. You can read online Basic Multivariable Calculus and write the review.

Basic Multivariable Calculus fills the need for a student-oriented text devoted exclusively to the third-semester course in multivariable calculus. In this text, the basic algebraic, analytic, and geometric concepts of multivariable and vector calculus are carefully explained, with an emphasis on developing the student's intuitive understanding and computational technique. A wealth of figures supports geometrical interpretation, while exercise sets, review sections, practice exams, and historical notes keep the students active in, and involved with, the mathematical ideas. All necessary linear algebra is developed within the text, and the material can be readily coordinated with computer laboratories. Basic Multivariable Calculus is the product of an extensive writing, revising, and class-testing collaboration by the authors of Calculus III (Springer-Verlag) and Vector Calculus (W.H. Freeman & Co.). Incorporating many features from these highly respected texts, it is both a synthesis of the authors' previous work and a new and original textbook.
Basic Multivariable Calculus fills the need for a student-oriented text devoted exclusively to the third-semester course in multivariable calculus.In this text, the basic algebraic, analytic, and geometric concepts of multivariable and vector calculus are carefully explained, with an emphasis on developing the student's intuitive understanding and computational technique. A wealth of figures supports geometrical interpretation, while exercise sets, review sections, practice exams, and historical notes keep the students active in, and involved with, the mathematical ideas. All necessary linear algebra is developed within the text, and the material can be readily coordinated with computer laboratories.Basic Multivariable Calculus is the product of an extensive writing, revising, and class-testing collaboration by the authors of Calculus III (Springer-Verlag) and Vector Calculus (W.H. Freeman & Co.). Incorporating many features from these highly respected texts, it is both a synthesis of the authors' previous work and a new and original textbook.
For use with Basic Multivariable Calculus
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
Quick Calculus 2nd Edition A Self-Teaching Guide Calculus is essential for understanding subjects ranging from physics and chemistry to economics and ecology. Nevertheless, countless students and others who need quantitative skills limit their futures by avoiding this subject like the plague. Maybe that's why the first edition of this self-teaching guide sold over 250,000 copies. Quick Calculus, Second Edition continues to teach the elementary techniques of differential and integral calculus quickly and painlessly. Your "calculus anxiety" will rapidly disappear as you work at your own pace on a series of carefully selected work problems. Each correct answer to a work problem leads to new material, while an incorrect response is followed by additional explanations and reviews. This updated edition incorporates the use of calculators and features more applications and examples. ".makes it possible for a person to delve into the mystery of calculus without being mystified." --Physics Teacher
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
This book is designed primarily for undergraduates in mathematics, engineering, and the physical sciences. Rather than concentrating on technical skills, it focuses on a deeper understanding of the subject by providing many unusual and challenging examples. The basic topics of vector geometry, differentiation and integration in several variables are explored. Furthermore, it can be used to impower the mathematical knowledge for Artificial Intelligence (AI) concepts. It also provides numerous computer illustrations and tutorials using MATLAB® and Maple®, that bridge the gap between analysis and computation. Partial solutions and instructor ancillaries available for use as a textbook. FEATURES Includes numerous computer illustrations and tutorials using MATLAB®and Maple® Covers the major topics of vector geometry, differentiation, and integration in several variables Instructors’ ancillaries available upon adoption
Vector calculus is the fundamental language of mathematical physics. It pro vides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These top ics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. The book is designed to be self-contained, so that it is suitable for a pro gramme of individual study. Each of the eight chapters introduces a new topic, and to facilitate understanding of the material, frequent reference is made to physical applications. The physical nature of the subject is clarified with over sixty diagrams, which provide an important aid to the comprehension of the new concepts. Following the introduction of each new topic, worked examples are provided. It is essential that these are studied carefully, so that a full un derstanding is developed before moving ahead. Like much of mathematics, each section of the book is built on the foundations laid in the earlier sections and chapters.