Download Free Basic Fracture Mechanics And Its Applications Book in PDF and EPUB Free Download. You can read online Basic Fracture Mechanics And Its Applications and write the review.

This textbook provides a comprehensive guide to fracture mechanics and its applications, providing an in-depth discussion of linear elastic fracture mechanics and a brief introduction to nonlinear fracture mechanics. It is an essential companion to the study of several disciplines such as aerospace, biomedical, civil, materials and mechanical engineering. This interdisciplinary textbook is also useful for professionals in several industries dealing with design and manufacturing of engineering materials and structures. Beginning with four foundational chapters, discussing the theory in depth, the book also presents specific aspects of how fracture mechanics is used to address fatigue crack growth, environment assisted cracking, and creep and creep-fatigue crack growth. Other topics include mixed-mode fracture and materials testing and selection for damage tolerant design, alongside in-depth discussions of ensuring structural integrity of components through real-world examples. There is a strong focus throughout the book on the practical applications of fracture mechanics. It provides a clear description of the theoretical aspects of fracture mechanics and also its limitations. Appendices provide additional background to ensure a comprehensive understanding and every chapter includes solved example problems and unsolved end of chapter problems. Additional instructor support materials are also available.
1) Includes a chapter on early theories on fracture as well as modern understandings 2) Contains a chapter on fatigue crack and creep fatigue crack 3) Provides an in-depth discussion of both linear elastic and nonlinear fracture mechanics 4) Includes both solved and unsolved example problems and end of chapter problems, and instructor support materials are also available
BASIC Fracture Mechanics: Including an Introduction to Fatigue discusses the fundamentals of fracture and fatigue. The book presents a series of Beginner's All-purpose Symbolic Instruction Code (BASIC) programs that implement fracture and fatigue methods. The first chapter reviews the BASIC, while the second chapter covers elastic fracture. Chapter 3 deals with the stress intensity factors. The book also tackles the crack tip plasticity and covers crack growth. The last chapter in the text discusses some applications in fracture mechanics. The book will be of great use to engineers who want to get acquainted with fracture mechanics.
Fracture Mechanics: Fundamentals and Applications, Fourth Edition is the most useful and comprehensive guide to fracture mechanics available. It has been adopted by more than 150 universities worldwide and used by thousands of engineers and researchers. This new edition reflects the latest research, industry practices, applications, and computational analysis and modeling. It encompasses theory and applications, linear and nonlinear fracture mechanics, solid mechanics, and materials science with a unified, balanced, and in-depth approach. Numerous chapter problems have been added or revised, and additional resources are available for those teaching college courses or training sessions. Dr. Anderson’s own website can be accessed at www.FractureMechanics.com.
The purpose of this book is to present, describe and demonstrate the use of numerical methods in solving crack problems in fracture mechanics. The text concentrates, to a large extent, on the application of the Boundary Element Method (BEM) to fracture mechanics, although an up-to-date account of recent advances in other numerical methods such as the Finite Element Method is also presented. The book is an integrated presentation of modem numerical fracture mechanics, it contains a compilation of the work of many researchers as well as accounting for some of authors' most recent work on the subject. It is hoped that this book will bridge the gap that exists between specialist books on theoretical fracture mechanics on one hand, and texts on numerical methods on the other. Although most of the methods presented are the latest developments in the field of numerical fracture mechanics, the authors have also included some simple techniques which are essential for understanding the physical principles that govern crack problems in general. Different numerical techniques are described in detail and where possible simple examples are included, as well as test results for more complicated problems. The book consists of six chapters. The first chapter initially describes the historical development of theoretical fracture mechanics, before proceeding to present the basic concepts such as energy balance, stress intensity factors, residual strength and fatigue crack growth as well as briefly describing the importance of stress intensity factors in corrosion and residual stress cracking.
A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques
The book offers detailed treatment on fundamental concepts of fracture mechanics. The text is useful for undergraduate students, graduate students and researchers.
This book presents, in a unified manner, a variety of topics in Continuum and Fracture Mechanics: energy methods, conservation laws, mathematical methods to solve two-dimensional and three-dimensional crack problems. Moreover, a series of new subjects is presented in a straightforward manner, accessible to under-graduate students. Emphasizing physical or experimental back-grounds, then analysis and theoretical results, this monograph is intended for use by students and researchers in solid mechanics, mechanical engineering and applied mathematics.
With its combination of practicality, readability, and rigor that is characteristic of any truly authoritative reference and text, Fracture Mechanics: Fundamentals and Applications quickly established itself as the most comprehensive guide to fracture mechanics available. It has been adopted by more than 100 universities and embraced by thousands of professional engineers worldwide. Now in its third edition, the book continues to raise the bar in both scope and coverage. It encompasses theory and applications, linear and nonlinear fracture mechanics, solid mechanics, and materials science with a unified, balanced, and in-depth approach. Reflecting the many advances made in the decade since the previous edition came about, this indispensable Third Edition now includes: A new chapter on environmental cracking Expanded coverage of weight functions New material on toughness test methods New problems at the end of the book New material on the failure assessment diagram (FAD) method Expanded and updated coverage of crack closure and variable-amplitude fatigue Updated solutions manual In addition to these enhancements, Fracture Mechanics: Fundamentals and Applications, Third Edition also includes detailed mathematical derivations in appendices at the end of applicable chapters; recent developments in laboratory testing, application to structures, and computational methods; coverage of micromechanisms of fracture; and more than 400 illustrations. This reference continues to be a necessity on the desk of anyone involved with fracture mechanics.
Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)