Download Free Basic Electromagnetism Book in PDF and EPUB Free Download. You can read online Basic Electromagnetism and write the review.

Professor Dobbs provides an elegant and clear account of the subject, leading the student from electrostatics through to Maxwell's equations and electromagnetic waves, covering all the material needed by a student taking courses on electricity and magnetism and electromagnetic waves.
This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. By making lesser demands on mathematical knowledge than typical texts, and by emphasizing electromagnetic properties of materials and their applications, this text is particularly appropriate for students of materials science. Many competing books focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves.
This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. By making lesser demands on mathematical knowledge than typical texts, and by emphasizing electromagnetic properties of materials and their applications, this text is particularly appropriate for students of materials science. Many competing books focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves.
Electromagnetics is one of the fundamental disciplines of electronic engineering. The author explains the development of field theory in relation to common electrical circuits and components, as opposed to just circuit theory, thus giving the reader a broader perspective of electrical circuits.Essentially in two parts, this book will help students to gain an appreciation of the physical effects of electrical and magnetic fields. The first part covers the basic theory of electrostatics, electromagnetism and electroconductive fields and applies the theory to different transmission lines. It culminates in a comparison of the basic relationships that lie behind all the field systems covered. The second part covers the physical effects of dielectrics and ferrous materials on capacitors and coils. It is truly introductory with very little prior knowledge assumed. The mathematical techniques required to manipulate the theory are introduced from basics and there are numerous worked examples and problems. Self-assessment questions are given at the end of each chapter to allow the student to check their understanding of material before moving onto further chapters. This is an accessible and self-contained introduction to a topic that all physical scientists and engineers must get to grips with before developing their knowledge further.
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.
I have tried in this book to introduce the basic concepts of electromagnetic field theory at a level suitable for students entering degree or higher diploma courses in electronics or subjects allied to it. Examples and applications have been drawn from areas such as instrumentation rather than machinery, as this was felt to be more apt for the majority of such readers. Some students may have been following courses with a strong bias towards prac tical electronics and perhaps not advanced their understanding of the physics of electric and magnetic fields greatly since '0' level or its equivalent. The book there fore does not assume that 'A' level physics has been studied. Students of BTEC courses or 'A' level subjects such as technology might also find the material useful. At the other extreme, students who have achieved well on an 'A' level course will, it is hoped, find stimulating material in the applications discussed and in the marginal notes, which suggest further reading or comment on the deeper implica tions of the work.
This book is unique because unlike others on the subject that focus on mathematical arguments, this volume emphasizes the original field concept, aiming at objectives in modern information technology. Written primarily for undergraduate students of physics and engineering, this book serves as a useful reference for graduate students and researchers too. With concise introductory arguments for the physics of electromagnetism, this book covers basic topics including the nature of space-time-dependent radiations in modern applications.
A basic introduction to electromagnetism, supplying the fundamentals of electrostatics and magnetostatics, in addition to a thorough investigation of electromagnetic theory. Numerous problems and references. Calculus and differential equations required. 1947 edition.