Download Free Basic Computer Science Book in PDF and EPUB Free Download. You can read online Basic Computer Science and write the review.

Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students.
A new version of the classic and widely used text adapted for the JavaScript programming language. Since the publication of its first edition in 1984 and its second edition in 1996, Structure and Interpretation of Computer Programs (SICP) has influenced computer science curricula around the world. Widely adopted as a textbook, the book has its origins in a popular entry-level computer science course taught by Harold Abelson and Gerald Jay Sussman at MIT. SICP introduces the reader to central ideas of computation by establishing a series of mental models for computation. Earlier editions used the programming language Scheme in their program examples. This new version of the second edition has been adapted for JavaScript. The first three chapters of SICP cover programming concepts that are common to all modern high-level programming languages. Chapters four and five, which used Scheme to formulate language processors for Scheme, required significant revision. Chapter four offers new material, in particular an introduction to the notion of program parsing. The evaluator and compiler in chapter five introduce a subtle stack discipline to support return statements (a prominent feature of statement-oriented languages) without sacrificing tail recursion. The JavaScript programs included in the book run in any implementation of the language that complies with the ECMAScript 2020 specification, using the JavaScript package sicp provided by the MIT Press website.
This book presents fundamental contributions to computer science as written and recounted by those who made the contributions themselves. As such, it is a highly original approach to a OC living historyOCO of the field of computer science. The scope of the book is broad in that it covers all aspects of computer science, going from the theory of computation, the theory of programming, and the theory of computer system performance, all the way to computer hardware and to major numerical applications of computers.
Natural computing brings together nature and computing to develop new computational tools for problem solving; to synthesize natural patterns and behaviors in computers; and to potentially design novel types of computers. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications presents a wide-ranging survey of novel techniqu
Computer System Security: Basic Concepts and Solved Exercises is designed to expose students and others to the basic aspects of computer security. Written by leading experts and instructors, it covers e-mail security; viruses and antivirus programs; program and network vulnerabilities; firewalls, address translation and filtering; cryptography; secure communications; secure applications; and security management. Written as an accompanying text for courses on network protocols, it also provides a basic tutorial for those whose livelihood is dependent upon secure systems. The solved exercises included have been taken from courses taught in the Communication Systems department at the EPFL. .
Understand essential computer science concepts and skills. This book focuses on the foundational and fundamental concepts upon which expertise in specific areas can be developed, including computer architecture, programming language, algorithm and data structure, operating systems, computer networks, distributed systems, security, and more. According to code.org, there are 500,000 open programming positions available in the US— compared to an annual crop of just 50,000 graduating computer science majors. The US Department of Labor predicted that there will be almost a million and a half computer science jobs in the very near future, but only enough programmers to fill roughly one third of these jobs. To bridge the gap, many people not formally trained in computer science are employed in programming jobs. Although they are able to start programming and coding quickly, it often takes them time to acquire the necessary understanding to gain the requisite skills to become an efficient computer engineer or advanced developer. What You Will Learn The fundamentals of how a computer works The basics of computer programming and programming paradigms How to write efficient programs How the hardware and software work together to provide a good user experience and enhance the usability of the system How computers can talk to each other How to ensure the security of the system The fundamentals of cloud offerings, implications/trade-offs, and deployment/adoption configurations The fundamentals of machine learning Who This Book Is For Computer programmers lacking a formal education in computer science, and anyone with a formal education in computer science, looking to develop a general understanding of computer science fundamentals
Get to grips with the building blocks of programming languages and get started on your programming journey without a computer science degree Key FeaturesUnderstand the fundamentals of a computer program and apply the concepts you learn to different programming languagesGain the confidence to write your first computer programExplore tips, techniques, and best practices to start coding like a professional programmerBook Description Learning how to code has many advantages, and gaining the right programming skills can have a massive impact on what you can do with your current skill set and the way you advance in your career. This book will be your guide to learning computer programming easily, helping you overcome the difficulties in understanding the major constructs in any mainstream programming language. Computer Programming for Absolute Beginners starts by taking you through the building blocks of any programming language with thorough explanations and relevant examples in pseudocode. You'll understand the relationship between computer programs and programming languages and how code is executed on the computer. The book then focuses on the different types of applications that you can create with your programming knowledge. You'll delve into programming constructs, learning all about statements, operators, variables, and data types. As you advance, you'll see how to control the flow of your programs using control structures and reuse your code using functions. Finally, you'll explore best practices that will help you write code like a pro. By the end of this book, you'll be prepared to learn any programming language and take control of your career by adding coding to your skill set. What you will learnGet to grips with basic programming language concepts such as variables, loops, selection and functionsUnderstand what a program is and how the computer executes itExplore different programming languages and learn about the relationship between source code and executable codeSolve problems using various paradigms such as procedural programming, object oriented programming, and functional programmingWrite high-quality code using several coding conventions and best practicesBecome well-versed with how to track and fix bugs in your programsWho this book is for This book is for beginners who have never programmed before and are looking to enter the world of programming. This includes anyone who is about to start studying programming and wants a head start, or simply wants to learn how to program on their own.
This book thoroughly explains how computers work. It starts by fully examining a NAND gate, then goes on to build every piece and part of a small, fully operational computer. The necessity and use of codes is presented in parallel with the apprioriate pieces of hardware. The book can be easily understood by anyone whether they have a technical background or not. It could be used as a textbook.