Download Free Bandwidth Efficient Coded Modulation Techniques For Fading Channels Book in PDF and EPUB Free Download. You can read online Bandwidth Efficient Coded Modulation Techniques For Fading Channels and write the review.

Coded-Modulation Techniques for Fading Channels provides the reader with a sound background for the application of bandwidth-efficient coded-modulation techniques in fading channels. The book systematically presents recent developments in the field, which has grown rapidly in recent years, and provides a solid frame of reference for further research in this area. During the past decade there has been a proliferation of research in the area of bandwidth-efficient coded-modulation techniques. The primary advantage of these schemes over modulation schemes employing traditional error correcting codes is their ability to improve the performance of the communication system without bandwidth expansion. This property makes them a suitable choice for channels which are limited in both power and bandwidth. A typical example of such channels is a mobile satellite channel, where it is desired to accommodate a large number of users in a given bandwidth with a power which is constrained by the physical size of the satellite and by the vehicle's antenna. Coded-Modulation Techniques for Fading Channels is an excellent reference for researchers and practicing engineers, and may be used as a text for advanced courses on the subject.
Coded-Modulation Techniques for Fading Channels provides the reader with a sound background for the application of bandwidth-efficient coded-modulation techniques in fading channels. The book systematically presents recent developments in the field, which has grown rapidly in recent years, and provides a solid frame of reference for further research in this area. During the past decade there has been a proliferation of research in the area of bandwidth-efficient coded-modulation techniques. The primary advantage of these schemes over modulation schemes employing traditional error correcting codes is their ability to improve the performance of the communication system without bandwidth expansion. This property makes them a suitable choice for channels which are limited in both power and bandwidth. A typical example of such channels is a mobile satellite channel, where it is desired to accommodate a large number of users in a given bandwidth with a power which is constrained by the physical size of the satellite and by the vehicle's antenna. Coded-Modulation Techniques for Fading Channels is an excellent reference for researchers and practicing engineers, and may be used as a text for advanced courses on the subject.
Coded Modulation Systems is an introduction to the subject of coded modulation in digital communication. It is designed for classroom use and for anyone wanting to learn the ideas behind this modern kind of coding. Coded modulation is signal encoding that takes into account the nature of the channel over which it is used. Traditional error correcting codes work with bits and add redundant bits in order to correct transmission errors. In coded modulation, continuous time signals and their phases and amplitudes play the major role. The coding can be seen as a patterning of these quantities. The object is still to correct errors, but more fundamentally, it is to conserve signal energy and bandwidth at a given error performance. The book divides coded modulation into three major parts. Trellis coded modulation (TCM) schemes encode the points of QAM constellations; lattice coding and set-partition techniques play major roles here. Continuous-phase modulation (CPM) codes encode the signal phase, and create constant envelope RF signals. The partial-response signaling (PRS) field includes intersymbol interference problems, signals generated by real convolution, and signals created by lowpass filtering. In addition to these topics, the book covers coding techniques of several kinds for fading channels, spread spectrum and repeat-request systems. The history of the subject is fully traced back to the formative work of Shannon in 1949. Full explanation of the basics and complete homework problems make the book ideal for self-study or classroom use.
This book discusses the latest channel coding techniques, MIMO systems, and 5G channel coding evolution. It provides a comprehensive overview of channel coding, covering modern techniques such as turbo codes, low-density parity-check (LDPC) codes, space–time coding, polar codes, LT codes, and Raptor codes as well as the traditional codes such as cyclic codes, BCH, RS codes, and convolutional codes. It also explores MIMO communications, which is an effective method for high-speed or high-reliability wireless communications. It also examines the evolution of 5G channel coding techniques. Each of the 13 chapters features numerous illustrative examples for easy understanding of the coding techniques, and MATLAB-based programs are integrated in the text to enhance readers’ grasp of the underlying theories. Further, PC-based MATLAB m-files for illustrative examples are included for students and researchers involved in advanced and current concepts of coding theory.
This book constitutes the refereed proceedings of the International Conference on Advances in Computing Communications and Control, ICAC3 2011, held in Mumbai, India, in January 2011. The 84 revised full papers presented were carefully reviewed and selected from 309 submissions. The papers address issues such as AI, artificial neural networks, computer graphics, data warehousing and mining, distributed computing, geo information and statistical computing, learning algorithms, system security, virtual reality, cloud computing, service oriented architecture, semantic web, coding techniques, modeling and simulation of communication systems, network architecture, network protocols, optical fiber/microwave communication, satellite communication, speech/image processing, wired and wireless communication, cooperative control, and nonlinear control, process control and instrumentation, industrial automation, controls in aerospace, robotics, and power systems.
This book grew out of our research, industry consulting and con tinuing education courses. Turbo coding initially seemed to belong to a restricted research area, while now has become a part of the mainstream telecommu nication theory and practice. The turbo decoding principles have found widespread applications not only in error control, but in de tection, interference suppression and equalization. Intended for use by advanced students and professional engi neers, involved in coding and telecommunication research, the book includes both basic and advanced material. The chapters are se quenced so that the knowledge is acquired in a logical and progres sive way. The algorithm descriptions and analysis are supported by examples throughout the book. Performance evaluations of the presented algorithms are carried out both analytically and by sim ulations. Basic material included in the book has been taught to students and practicing professionals over the last four years in the form of senior undergraduate or graduate courses, lecture series and short continuing education courses.
This book gives a review of the principles, methods and techniques of important and emerging research topics and technologies in Channel Coding, including theory, algorithms, and applications. Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its applications - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in Channel Coding - Presents core principles in Channel Coding theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge
An important look at bandwidth-efficient modulations with applications to today's Space program Based on research and results obtained at the California Institute of Technology's Jet Propulsion Laboratory, this timely book defines, describes, and then delineates the performance (power and bandwidth) of digital communication systems that incorporate a wide variety of bandwidth-efficient modulations appropriate for the design and implementation of space communications systems. The author compares the performance of these systems in the presence of a number of practical (non-ideal) transmitter and receiver characteristics such as modulator and phase imbalance, imperfect carrier synchronization, and transmitter nonlinearity. Although the material focuses on the deep space applications developed at the Jet Propulsion Laboratory, the presentation is sufficiently broad as to be applicable to a host of other applications dealing with RF communications. An important contribution to the scientific literature, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications * was commissioned by the JPL Deep Space Communications and Navigation System Center of Excellence * highlights many NASA-funded technical contributions pertaining to deep space communications systems * is a part of the prestigious Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Almost two decades ago, by using random coding bound arguments, it was proved that considerable progress in the power efficiency of digital communication could be obtained by treating coding and modulation as a single entity. These ideas were carried further in the manifestation of Trellis Coded Modulation (TCM) techniques. Sine then, the idea of TCM has expanded greatly beyond the type of schemes originally presented, and has given way to a considerable amount of research activity, both theoretical and applied, and to the implementation of several TCM techniques in new generations of modems. Block-Coded Modulation (BCM) was discovered at about the same time as TCM, and is currently attracting considerable interest as a possible alternative to TCM for some applications. A thorough overview on both kinds of coded modulation is discussed in this volume. It assesses the status and the prospects of coded modulation and of bandwidth-efficient transmission, shedding light on the future avenue of theory and applications in these exciting areas.