Download Free Banach Algebras And The General Theory Of Algebras Book in PDF and EPUB Free Download. You can read online Banach Algebras And The General Theory Of Algebras and write the review.

This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.
This second of two volumes gives a modern exposition of the theory of Banach algebras.
Banach algebras are Banach spaces equipped with a continuous multipli- tion. In roughterms,there arethree types ofthem:algebrasofboundedlinear operators on Banach spaces with composition and the operator norm, al- bras consisting of bounded continuous functions on topological spaces with pointwise product and the uniform norm, and algebrasof integrable functions on locally compact groups with convolution as multiplication. These all play a key role in modern analysis. Much of operator theory is best approached from a Banach algebra point of view and many questions in complex analysis (such as approximation by polynomials or rational functions in speci?c - mains) are best understood within the framework of Banach algebras. Also, the study of a locally compact Abelian group is closely related to the study 1 of the group algebra L (G). There exist a rich literature and excellent texts on each single class of Banach algebras, notably on uniform algebras and on operator algebras. This work is intended as a textbook which provides a thorough introduction to the theory of commutative Banach algebras and stresses the applications to commutative harmonic analysis while also touching on uniform algebras. In this sense and purpose the book resembles Larsen’s classical text [75] which shares many themes and has been a valuable resource. However, for advanced graduate students and researchers I have covered several topics which have not been published in books before, including some journal articles.
This book provides a comprehensive exposition of M-ideal theory, a branch ofgeometric functional analysis which deals with certain subspaces of Banach spaces arising naturally in many contexts. Starting from the basic definitions the authors discuss a number of examples of M-ideals (e.g. the closed two-sided ideals of C*-algebras) and develop their general theory. Besides, applications to problems from a variety of areas including approximation theory, harmonic analysis, C*-algebra theory and Banach space geometry are presented. The book is mainly intended as a reference volume for researchers working in one of these fields, but it also addresses students at the graduate or postgraduate level. Each of its six chapters is accompanied by a Notes-and-Remarks section which explores further ramifications of the subject and gives detailed references to the literature. An extensive bibliography is included.
Banach algebras combine algebraic and analytical aspects: it is the interplay of these structures that gives the subject its fascination. This volume expounds the general theory of Banach algebras, and shows how their topology is often determined by their algebraic structure: the central questions ask when homomorphisms and derivations from Banach algebras are automatically continuous, and seek canonical forms for these maps. The book synthesizes work over the last 20 years, and givesa definitive account; there are many new and unpublished results. The book describes many specific classes of Banach algebras, including function algebras, group algebras, algebras of operators, C*-algebras, and radical Banach algebras; it is a compendium of results on these examples. The subject interweaves algebra, functional analysis, and complex analysis, and has a dash of set theory and logic; the background in all these areas is fully explained. This volume is essential reading for anyone interested in any aspect of this vast subject.
Banach algebras is a multilayered area in mathematics with many ramifications. With a diverse coverage of different schools working on the subject, this proceedings volume reflects recent achievements in areas such as Banach algebras over groups, abstract harmonic analysis, group actions, amenability, topological homology, Arens irregularity, C*-algebras and dynamical systems, operator theory, operator spaces, and locally compact quantum groups.
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
The axioms of a complex Banach algebra were very happily chosen. They are simple enough to allow wide ranging fields of application, notably in harmonic analysis, operator theory and function algebras. At the same time they are tight enough to allow the development of a rich collection of results, mainly through the interplay of the elementary parts of the theories of analytic functions, rings, and Banach spaces. Many of the theorems are things of great beauty, simple in statement, surprising in content, and elegant in proof. We believe that some of them deserve to be known by every mathematician. The aim of this book is to give an account of the principal methods and results in the theory of Banach algebras, both commutative and non commutative. It has been necessary to apply certain exclusion principles in order to keep our task within bounds. Certain classes of concrete Banach algebras have a very rich literature, namely C*-algebras, function algebras, and group algebras. We have regarded these highly developed theories as falling outside our scope. We have not entirely avoided them, but have been concerned with their place in the general theory, and have stopped short of developing their special properties. For reasons of space and time we have omitted certain other topics which would quite naturally have been included, in particular the theories of multipliers and of extensions of Banach algebras, and the implications for Banach algebras of some of the standard algebraic conditions on rings.