Download Free Balancing And Sequencing Of Assembly Lines Book in PDF and EPUB Free Download. You can read online Balancing And Sequencing Of Assembly Lines and write the review.

The book deals with two main decision problems which arise when flow-line production systems are installed and operated. The assembly line balancing problem consists of partitioning the work, necessary to assemble the product(s), among different stations of an assembly line. If several models of a product are jointly processed on a line, this medium-term problem is connected with the short-term problem of determining an operating sequence of the models. In Part I balancing and sequencing problems are discussed, classified, and arranged within a hierarchical planning system. In the present second edition special emphasis is given to u-shaped assembly lines which are important components of modern just-in-time production systems. Part II is concerned with exact and heuristic procedures for solving those decision problems. For each problem type considered, a survey of existing procedures is given and new efficient solution methods are developed. Comprehensive numerical investigations showing the effectiveness of the new methods and their superiority over existing approaches are reported.
Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.
This book has resulted from the activities of IFAC TC 5.2 “Manufacturing Modelling for Management and Control”. The book offers an introduction and advanced techniques of scheduling applications to cloud manufacturing and Industry 4.0 systems for larger audience. This book uncovers fundamental principles and recent developments in the theory and application of scheduling methodology to cloud manufacturing and Industry 4.0. The purpose of this book is to present recent developments in scheduling in cloud manufacturing and Industry 4.0 and to systemize these developments in new taxonomies and methodological principles to shape this new research domain. This book addresses the needs of both researchers and practitioners to uncover the challenges and opportunities of scheduling techniques’ applications to cloud manufacturing and Industry 4.0. For the first time, it comprehensively conceptualizes scheduling in cloud manufacturing and Industry 4.0 systems as a new research domain. The chapters of the book are written by the leading international experts and utilize methods of operations research, industrial engineering and computer science. Such a multi-disciplinary combination is unique and comprehensively deciphers major problem taxonomies, methodologies, and applications to scheduling in cloud manufacturing and Industry 4.0.
​Assembly Line Planning and Control describes the basic fundamentals of assembly lines for single model lines, mixed model make-to-stock lines, mixed model make-to-order lines and for one-station assembly. The book shows how to select the quantity of units to schedule for a shift duration, compute the number of operators needed on a line, set the conveyor speed, coordinate the main line with sub-assembly lines, assign the work elements to the operators on the line, sequence the models down the line, sequence the jobs down the line, calculate the part and component requirements for a line and for each station, determine the replenish needs of the parts and components from the suppliers, compute the similarity between the models being produced and show applications, use learning curves to estimate time and costs of assembly, and measure the efficiency of the line. The material is timeless and the book will never become obsolete. The author presents solutions with easy-to-understand numerical examples that can be applied to real-life applications.​
It is dealt with two main decision problems which arise when flow-line production systems are installed and operated. The assembly line balancing problem consists of partitioning the work, necessary to assemble the product(s), among different stations of an assembly line. If several models of a product are jointly processed on a line, this medium-term problem is connected with the short-term problem of determining an operating sequence of the models. In Part I balancing and sequencing problems are discussed, classified, and arranged within a hierarchical planning system. In the second edition special emphasis is given to u-shaped assembly lines which are important components of modern just-in-time production systems. Part II is concerned with exact and heuristic procedures for solving those decision problems. For each problem type considered, a survey of existing procedures is given and new efficient solution methods are developed. Comprehensive numerical investigations are reported.
Efficient assembly line design is a problem of considerable industrial importance. Assembly Line Design will be bought by technical personnel working in design, planning and production departments in industry as well as managers in industry who want to learn more about concurrent engineering. This book will also be purchased by researchers and postgraduate students in mechanical, manufacturing or micro-engineering.
These proceedings represent trends in Product Development concerning industrial vendors and scientific research aspects. Coverage includes the following topics are covered: Design Theory, Product Design, Requirements, Collaborative Engineering, Complex Design, Mechatronics, Reverse Engineering, Virtual Prototyping, CAE, KBE and PLM. The papers presented in this book show that answers can only be composed out of a variety of solutions where psychological, economical and technical research results are taken into account.
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
Metaheuristics support managers in decision-making with robust tools that provide high-quality solutions to important applications in business, engineering, economics, and science in reasonable time frames, but finding exact solutions in these applications still poses a real challenge. However, because of advances in the fields of mathematical optimization and metaheuristics, major efforts have been made on their interface regarding efficient hybridization. This edited book will provide a survey of the state of the art in this field by providing some invited reviews by well-known specialists as well as refereed papers from the second Matheuristics workshop to be held in Bertinoro, Italy, June 2008. Papers will explore mathematical programming techniques in metaheuristics frameworks, and especially focus on the latest developments in Mixed Integer Programming in solving real-world problems.
Industry has grown to recognize the value of disassembly processes across a wide range of products. Increasing legislation that may soon require mandatory recycling of many post-consumed goods and a desire to develop more environmentally benign end-of-life processes has fueled research into this concept. Traditionally, disassembly has been viewed a