Download Free Bacterial Transport Book in PDF and EPUB Free Download. You can read online Bacterial Transport and write the review.

Transport of molecules across the cell membrane is a fundamental process of all living organisms. It is essential for understanding growth, development, nutrition as well as uptake and excretion of exogenous or synthesized molecules. Microbes respresent general and basic functional systems where many transport processes have been studied on a molecular basis. Knowledge of the microbial transport processes will provide new perspectives to treatments by inhibitors, drugs, antibiotics, vitamins, growth promotion compounds, activators and toxic compunds of various kinds.
Transport of molecules across the cell membrane is a fundamental process of all living organisms. It is essential for understanding growth, development, nutrition as well as uptake and excretion of exogenous or synthesized molecules. Microbes respresent general and basic functional systems where many transport processes have been studied on a molecular basis. Knowledge of the microbial transport processes will provide new perspectives to treatments by inhibitors, drugs, antibiotics, vitamins, growth promotion compounds, activators and toxic compunds of various kinds.
Ion Transport in Prokaryotes provides an advance treatise on ion transport and prokaryotic organisms. This book is divided into three main topics—cation transport systems, anion transport systems, and plasmid-encoded transport systems. This compilation specifically discusses the proton transport and proton-motive force in prokaryotic cells, potassium transport in bacteria, and bioenergetic functions of sodium ions. The calcium transport in prokaryotes, phosphate transport in prokaryotes, and transport of organic acids in prokaryotes are also elaborated. This text likewise covers the chloride, nitrate, and sulfate transport in bacteria and bacterial magnesium, manganese, and zinc transport. This publication is recommended for biologists, specialists, and students interested in the bacterial ion transport system.
Mechanisms and Regulation of Carbohydrate Transport in Bacteria reviews the developments in the study of the mechanisms and regulation of carbohydrate transport in prokaryotic organisms. The book presents the progress made in the understanding of transport and regulation of carbohydrates in bacteria in the molecular level. Aspects on the important structural and topographical features of several sugar permeases in Escherichia coli are elucidated; the energy-coupling processes are clearly delineated for most (but not all) types of bacterial carbohydrate permease systems; and mechanistic details of the translocation processes are proposed. Molecular biologists, microbial biochemists, and cell biologists will find the book a good source of information.
Advances in Microbial Physiology: Advances in Bacterial Electron Transport Systems and Their Regulation, the latest volume in the Advances in Microbial Physiology series, continues the long tradition of topical and important reviews in microbiology, with this latest volume focusing on the advances in bacterial electron transport systems and their regulation. Contains contributions from leading authorities in the field of microbial physiology Informs and updates on all the latest developments in the field Presents a primary focus for this edition on the advances made in bacterial electron transport systems and their regulation
provides an up–to–date survey of iron transport systems in bacteria; details iron transport and its regulation in E.colias a prototype for iron transport systems in gram–negative bacteria; includes chapters on the major gram–negative, gram–positive and acid–fast bacterial pathogens – their iron transport systems and the roles of these systems in virulence; presents structural studies of siderophores, heme carriers, and iron transport proteins; discusses the ecology of siderophores and potential therapeutic uses of siderophores.
One property common to all cells is transport. Molecules and ions must enter and leave cells by crossing membranes in a controlled manner. The process may take any of several forms: simple diffusion, carrier-mediated diffusion, active transport, or group translocation. There is more than one way to measure each. Transport kinetics, with particular reference to the red blood cell, were discussed in a previous volume. Three chapters deal with the general subject of transport in this volume. Maloney, Kashket, and Wilson summarize the appropriate methodology for studying metabolite and ion transport in bacteria, and Kimmich describes the relevant method ology for the isolated intestinal epithelial cell. The methods described in these two chapters have general application to transport studies in single cells from any source. The approach described in these two complementary articles is extended in the chapter by Hochstadt and her collaborators on the use of isolated membranes from bacterial and mammalian cells for the study of trans port phenomena. If one can prepare a suitable plasma membrane fraction (sealed, impermeable vesicles with the necessary transport components intact), it becomes possible to separate the events of transport from any subsequent metabolism that may occur in the cell. Isolated membrane vesicles are relatively easy to obtain from bacteria, and they are com paratively well studied. Work with similar preparations from cultured mammalian cells is just beginning but has much promise.