Download Free Bacterial Regulatory Rna Book in PDF and EPUB Free Download. You can read online Bacterial Regulatory Rna and write the review.

RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Revealing the many roles of RNA in regulating gene expression For decades after the discoveries of messenger RNA, transfer RNA, and ribosomal RNA, it was largely assumed that the role of RNA in the cell was limited to shuttling the genomic message, chaperoning amino acids, and toiling in the ribosomes. Eventually, hints that RNA molecules might have regulatory roles began to appear. With the advent of genomics and bioinformatics, it became evident that numerous other RNA forms exist and have specific functions, including small RNAs (sRNA), RNA thermometers, and riboswitches to regulate core metabolic pathways, bacterial pathogenesis, iron homeostasis, quorum sensing, and biofilm formation. All of these functions, and more, are presented in Regulating with RNA in Bacteria and Archaea, written by RNA biologists from around the globe. Divided into eight sections-RNases and Helicases, Cis-Acting RNAs, Cis Encoded Base Pairing RNAs, Trans-Encoded Base Pairing RNAs, Protein Titration and Scaffolding, General Considerations, Emerging Topics, and Resources-this book serves as an excellent resource for established RNA biologists and for the many scientists who are studying regulated cellular systems. It is no longer a fair assumption that gene expression regulation is the provenance of proteins only or that control is exerted primarily at the level of transcription. This book makes clear that regulatory RNAs are key partners along with proteins in controlling the complex interactions and pathways found within prokaryotes.
Gain new insight on utilizing bacterial stress responses to better combat bacterial infection with antibiotics and improve biotechnology. • Reviews the vast number of new findings that have greatly advanced the understanding of bacterial stress responses in the past 10 years. • Explores general regulatory principles, including the latest findings from genomics studies, including new research findings on both specific and general stress responses. • Details how stress responses affect the interactions between bacteria and host cells and covers bacterial stress responses in different niches and communities, with an emphasis on extreme environments.
A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.
New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p
RNAs form complexes with proteins and other RNAs. The RNA‐infrastructure represents the spatiotemporal interaction of these proteins and RNAs in a cell‐wide network. RNA Infrastructure and Networks brings together these ideas to illustrate the scope of RNA‐based biology, and how connecting RNA mechanisms is a powerful tool to investigate regulatory pathways. This book is but a taste of the wide range of RNA‐based mechanisms that connect in the RNA infrastructure.
This book provides a wide spectrum of methods to study RNA chaperones in vitro, at the single molecule level, and protocols useful for cell-based assays. Beginning with a section on a number of bacterial proteins for study, the volume also explores proteins from eukaryotic cells and how to delve into the complex interactions between RNA chaperones and the folding and unfolding of proteins. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Chaperones: Methods and Protocols serves as an ideal guide for scientists and students interested in RNA biology and RNA chaperones. Chapter 3 is available Open Access under a CC-BY 4.0 license via link.springer.com.
In the past few decades there has been incredible growth in "bionano"-related research, which has been accompanied by numerous publications in this field. Although various compilations address topics related to deoxyribonucleic acid (DNA) and protein, there are few books that focus on determining the structure of ribonucleic acid (RNA) and using RNA as building blocks to construct nanoarchitectures for biomedical and healthcare applications. RNA Nanotechnology is a comprehensive volume that details both the traditional approaches and the latest developments in the field of RNA-related technology. This book targets a wide audience: a broad introduction provides a solid academic background for students, researchers, and scientists who are unfamiliar with the subject, while the in-depth descriptions and discussions are useful for advanced professionals. The book opens with reviews on the basic aspects of RNA biology, computational approaches for predicting RNA structures, and traditional and emerging experimental approaches for probing RNA structures. This section is followed by explorations of the latest research and discoveries in RNA nanotechnology, including the design and construction of RNA-based nanostructures. The final segment of the book includes descriptions and discussions of the potential biological and therapeutic applications of small RNA molecules, such as small/short interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and ribozymes.