Download Free Backpropagation Book in PDF and EPUB Free Download. You can read online Backpropagation and write the review.

Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.
Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.
Now, for the first time, publication of the landmark work inbackpropagation! Scientists, engineers, statisticians, operationsresearchers, and other investigators involved in neural networkshave long sought direct access to Paul Werbos's groundbreaking,much-cited 1974 Harvard doctoral thesis, The Roots ofBackpropagation, which laid the foundation of backpropagation. Now,with the publication of its full text, these practitioners can gostraight to the original material and gain a deeper, practicalunderstanding of this unique mathematical approach to socialstudies and related fields. In addition, Werbos has provided threemore recent research papers, which were inspired by his originalwork, and a new guide to the field. Originally written for readerswho lacked any knowledge of neural nets, The Roots ofBackpropagation firmly established both its historical andcontinuing significance as it: * Demonstrates the ongoing value and new potential ofbackpropagation * Creates a wealth of sound mathematical tools useful acrossdisciplines * Sets the stage for the emerging area of fast automaticdifferentiation * Describes new designs for forecasting and control which exploitbackpropagation * Unifies concepts from Freud, Jung, biologists, and others into anew mathematical picture of the human mind and how it works * Certifies the viability of Deutsch's model of nationalism as apredictive tool--as well as the utility of extensions of thiscentral paradigm "What a delight it was to see Paul Werbos rediscover Freud'sversion of 'back-propagation.' Freud was adamant (in The Projectfor a Scientific Psychology) that selective learning could onlytake place if the presynaptic neuron was as influenced as is thepostsynaptic neuron during excitation. Such activation of bothsides of the contact barrier (Freud's name for the synapse) wasaccomplished by reducing synaptic resistance by the absorption of'energy' at the synaptic membranes. Not bad for 1895! But Werbos1993 is even better." --Karl H. Pribram Professor Emeritus,Stanford University
This book provides a practical explanation of the backpropagation neural networks and how it can be implemented for data prediction and data classification. The discussion in this book is presented in step by step so that it will help readers understand the fundamental of the backpropagation neural networks and its steps. This book is very suitable for students, researchers, and anyone who want to learn and implement the backpropagation neural networks for data prediction and data classification using PYTHON GUI and MariaDB. The discussion in this book will provide readers deep understanding about the backpropagation neural networks architecture and its parameters. The readers will be guided to understand the steps of the backpropagation neural networks for data prediction and data classification through case examples. In addition, readers are also guided step by step to implement the backpropagation neural networks for data prediction and data classification using PYTHON GUI and MariaDB. The readers will be guided to create their own backpropagation neural networks class and build their complete applications for data prediction and data classification. This book consists of three cases which are realized into complete projects using the Python GUI and MariaDB. The three cases that will be learned in this book are as follow. 1. Sales prediction using the backpropagation neural networks. 2. Earthquake data prediction using the backpropagation neural networks. 3. Fruit quality classification using the backpropagation neural networks. Each case in this book is equipped with a mathematical calculation that will help the reader understand each step that must be taken. The cases in this book are realized into three types of applications which are command window based application, GUI based application, and database application using Python GUI and MariaDB. The final result of this book is that the readers are able to realize each step of the backpropagation neural networks for data prediction and data classification. In Addition, the readers also are able to create the backpropagation neural networks applications which consists of three types of applications which are command window based application, GUI based application, and database application using Python GUI and MariaDB.
In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error.
This book presents a systematic approach to parallel implementation of feedforward neural networks on an array of transputers. The emphasis is on backpropagation learning and training set parallelism. Using systematic analysis, a theoretical model has been developed for the parallel implementation. The model is used to find the optimal mapping to minimize the training time for large backpropagation neural networks. The model has been validated experimentally on several well known benchmark problems. Use of genetic algorithms for optimizing the performance of the parallel implementations is described. Guidelines for efficient parallel implementations are highlighted.
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
What Is Backpropagation Backpropagation is a technique for machine learning that uses a backward pass to update the model's parameters. The goal of the algorithm is to reduce the mean squared error (MSE) as much as possible. The following actions are taken during backpropagation in a network with a single layer:Follow the path through the network from the input all the way to the output by computing the output of the hidden layers as well as the output layer. [This Is the Step of Feedforward]Calculate the derivative of the cost function with respect to the input layer and the hidden layers using the information available in the output layer.Repeatedly update the weights until they converge or sufficient iterations have been applied to the model, whichever comes first. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Backpropagation Chapter 2: Chain rule Chapter 3: Perceptron Chapter 4: Artificial neuron Chapter 5: Total derivative Chapter 6: Delta rule Chapter 7: Feedforward neural network Chapter 8: Multilayer perceptron Chapter 9: Vanishing gradient problem Chapter 10: Mathematics of artificial neural networks (II) Answering the public top questions about backpropagation. (III) Real world examples for the usage of backpropagation in many fields. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of backpropagation. What Is Artificial Intelligence Series The artificial intelligence book series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The artificial intelligence book series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.
(Bayreuth University, Germany), Jennie Si (Arizona State University, USA), and Hang Li (MicrosoftResearchAsia, China). Besides the regularsessions andpanels, ISNN 2008 also featured four special sessions focusing on some emerging topics.
Although infrared spectroscopy has been applied with success to the study of important biological and biomedical processes for many years, key advances in this vibrant technique have led to its increasing use, ranging from characterisation of individual macromolecules (DNA, RNA, lipids, proteins) to human tissues, cells and their components. Infrared spectroscopy thus has a significant role to play in the analysis of the vast number of genes and proteins being identified by the various genomic sequencing projects. Whilst this book gives an overview of the field it highlights more recent developments, such as the use of bright synchrotron radiation for recording infrared spectra, the development of two-dimensional infrared spectroscopy and the ability to record infrared spectra at ultrafast speeds. The main focus is on the mid-infrared region, since the great majority of studies are carried out in this region but there is increasing use of the near infrared for biomedical applications and a chapter is devoted to this part of the spectrum. Major advances in theoretical analysis have also enabled better interpretation of the infrared spectra of biological molecules and these are covered. The editors, Professor Andreas Barth of Stockholm University, Stockholm, Sweden and Dr Parvez I. Haris of De Montfort University, Leicester, U.K., who both have extensive research experience in biological infrared spectroscopy per se and in its use in the solution of biophysical problems, have felt it timely therefore to bring together this book. The book is intended for use both by research scientists already active in the use of biological infrared spectroscopy and for those coming new to the technique. Graduate students will also find it useful as an introduction to the technique.