Download Free Aviation Fuels Technology Book in PDF and EPUB Free Download. You can read online Aviation Fuels Technology and write the review.

Aviation Fuels provides up-to-date data on fuel effects on combustion performance and use of alternative fuels in aircraft. This book covers the latest advances on aviation fuel technologies, including alternative fuels, feedstocks and manufacturing processes, combustion performance, chemical modeling, fuel systems compatibility and the technical and environmental challenges for implementing the use of alternative fuels for aviation. Aviation fuel and combustion researchers, academics, and program managers for aviation technologies will value this comprehensive overview and summary on the present status of aviation fuels. Presents an overview on all relevant fields of aviation fuels, including production, approval, fuel systems compatibility and combustion (including emissions) Discusses the environmental impacts and carbon footprint of alternative fuels Features a chapter on electric flight and hydrogen powered aircraft and how its implementation will impact the aviation industry
Sustainable Alternatives for Aviation Fuels presents a technical and economic guide on the development of sustainable aviation fuels from renewable sources. With a focus on commercial viability and cost reduction, the book explores every aspect of the alternative aviation fuels supply chain, including commercially feasible and environmentally sound feedstock, production routes, the roles of catalysts in processing, conceptual process design, process economics, engine performance, future market trends and case studies. Readers are provided with the tools to make decisions at every stage that are supported by in-depth techno-economic analyses, lifecycle assessments, and considerations for development prospects within the context of sustainability. This book offers an excellent overview for readers involved in bioenergy and aviation. It is an invaluable resource for researchers and industry practitioners seeking to produce commercially viable, alternative aviation fuels. - Presents the current sustainable alternative fuels for aviation, including commercially viable and environmentally sound feedstock and production routes - Provides practical guidance on topics such as the role of catalysts in processing, conceptual process design and engine performance analysis - Explores process economics, market trends and LCA analysis, in addition to a techno-economic analysis of biojet fuel and its sustainability
Biofuels for Aviation: Feedstocks, Technology and Implementation presents the issues surrounding the research and use of biofuels for aviation, such as policy, markets, certification and performance requirements, life cycle assessment, and the economic and technical barriers to their full implementation. Readers involved in bioenergy and aviation sectors—research, planning, or policy making activities—will benefit from this thorough overview. The aviation industry's commitment to reducing GHG emissions along with increasing oil prices have sparked the need for renewable and affordable energy sources tailored to this sector's very specific needs. As jet engines cannot be readily electrified, turning to biofuels is the most viable option. However, aviation is a type of transportation for which traditional biofuels, such as bioethanol and biodiesel, do not fulfill key fuel requirements. Therefore, different solutions to this situation are being researched and tested around the globe, which makes navigating this scenario particularly challenging. This book guides readers through this intricate subject, bringing them up to speed with its current status and future prospects both from the academic and the industry point of view. Science and technology chapters delve into the technical aspects of the currently tested and the most promising technology in development, as well as their respective feedstocks and the use of additives as a way of adapting them to meet certain specifications. Conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch are explored and their results are assessed for current and future viability. - Presents the current status of biofuels for the aviation sector, including technologies that are currently in use and the most promising future technologies, their production processes and viability - Explains the requirements for certification and performance of aviation fuels and how that can be achieved by biofuels - Explores the economic and policy issues, as well as life cycle assessment, a comparative techno-economic analysis of promising technologies and a roadmap to the future - Explores conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.
The reduction of the fire hazard of fuel is critical to improving survivability in impact-survivable aircraft accidents. Despite current fire prevention and mitigation approaches, fuel flammability can overwhelm post-crash fire scenarios. The Workshop on Aviation Fuels with Improved Fire Safety was held November 19-20, 1996 to review the current state of development, technological needs, and promising technology for the future development of aviation fuels that are most resistant to ignition during a crash. This book contains a summary of workshop discussions and 11 presented papers in the areas of fuel and additive technologies, aircraft fuel system requirements, and the characterization of fuel fires.
Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends presents the available production processes for renewable aviation fuel, including the application of intensification and energy integration strategies. Despite biofuels have gained a lot of interest in the last years, renewable aviation fuel is one of the less studied. In the last ten years, there has been an incredible growth in the number of patents and articles related with its production processes. Several transformation pathways have been proposed, and new ones have been outlined. The book contains the main information about the production processes of renewable aviation fuel, considering international standards, available technologies, and recent scientific contributions. It also outlines the motivation for the development of renewable aviation fuel, and its main processing pathways from the different renewable raw materials. In addition, the application of intensification and energy integration strategies is presented, along with the identified future trends in this area - Includes the motivation for the development of renewable aviation fuel and applicable standards - Describes the processing pathways from biomass to produce renewable aviation fuel - Presents the application of intensification and energy integration strategies for the production of renewable aviation fuel - The future trends in the production processes of renewable aviation fuel are discussed
Biojet fuels have the potential to make an important contribution towards decarbonising the aviation sector. Biojet Fuel in Aviation Applications: Production, Usage and Impact of Biofuels covers all aspects of this sustainable aviation fuel including aviation biofuel public policies, production technologies, physico-chemical properties, combustion performances, techno-economics of sustainable fuel production, sustainability and energywater-food (EWF) nexus. This must-have book also charts the current state of the industry by discussing the relevant industry players who are currently producing alternative aviation fuels and flight tests, while also providing a glimpse of the future of the industry. This comprehensive book is written for undergraduate students, postgraduate students, researchers, engineers and policy makers wanting to build up knowledge in the specific area of biojet fuel or the broader fields of sustainable energy and aeronautics. - Reviews major aviation and biojet fuel policies, legislations, initiatives and roadmaps around the world - Features existing and emerging biojet fuel production pathways from various feedstocks - Highlights the key properties of biojet fuels that ensures inter-operability with conventional jet aviation fuel - Discusses the economic aspects of the biojet fuel industry and the barriers preventing its commercialisation - Examines the sustainability of biojet fuel from a life cycle assessment, energy balance and EWF nexus point of views
Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. Green Energy to Sustainability: Strategies for Global Industries examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. Offers extensive updates on the field of green energy for global industries Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more Provides an expanded focus on the next generation of energy technologies Reviews the latest advances in biofuel manufacturing technologies Integrates scientific, technological and business perspectives Highlights important developments needed for replacing fossil fuels with green energy Green Energy to Sustainability: Strategies for Global Industries will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.
Liquid hydrogen is shown to be the ideal fuel for civil transport aircraft, as well as for many types of military aircraft. Hydrogen Aircraft Technology discusses the potential of hydrogen for subsonic, supersonic, and hypersonic applications. Designs with sample configurations of aircraft for all three speed categories are presented, in addition to performance comparisons to equivalent designs for aircraft using conventional kerosine-type fuel and configurations for aircraft using liquid methane fuel. Other topics discussed include conceptual designs of the principal elements of fuel containment systems required for cryogenic fuels, operational elements (e.g., pumps, valves, pressure regulators, heat exchangers, lines and fittings), modifications for turbine engines to maximize the benefit of hydrogen, safety aspects compared to kerosine and methane fueled designs, equipment and facility designs for servicing hydrogen-fueled aircraft, production methods for liquid hydrogen, and the environmental advantages for using liquid hydrogen. The book also presents a plan for conducting the necessary development of technology and introducing hydrogen fuel into the worldwide civil air transport industry. Hydrogen Aircraft Technology will provide fascinating reading for anyone interested in aircraft and hydrogen fuel designs.