Download Free Autowave Processes In Kinetic Systems Book in PDF and EPUB Free Download. You can read online Autowave Processes In Kinetic Systems and write the review.

Probably, we are obliged to Science, more than to any other field of the human activity, for the origin of our sense that collective efforts are necessary indeed. F. Joliot-Curie The study of autowave processes is a young science. Its basic concepts and methods are still in the process of formation, and the field of its applications to various domains of natural sciences is expanding continuously. Spectacular examples of various autowave processes are observed experimentally in numerous laboratories of quite different orientations, dealing with investigations in physics, chemistry and biology. It is O1). r opinion, however, that if a history of the discovery of autowaves will he written some day its author should surely mention three fundamental phenomena which were the sources of the domain in view. "Ve mean combustion and phase transition waves, waves in chemical reactors where oxidation-reduction processes take place, and propagation of excitations in nerve fibres. The main tools of the theory of autowave processes are various methods used for investigating nonlinear discrete or distributed oscillating systems, the mathe matical theory of nonlinear parabolic differential equations, and methods of the theory of finite automata. It is noteworthy that the theory of autowave,. , has been greatly contributed to be work of brilliant mathematicians who anticipated the experimental discoveries in their abstract studies. One should mention R. Fishel' (1937), A. N. Kolmogorov, G. 1. Petrovskii, and N. S. Piskunov (1937), N. Wiener and A. Rosenbluth (1946), A. Turing (1952).
Contrary to monographs on non-linear optics this book concentrates on problems of self-organization in various important contexts. The reader learns how patterns in non-linear optical systems are created and what theoretical methods can be applied to describe them. Next, various aspects of pattern formation such as associative memory, information processing, spatio-temporal instability, photo refraction, and so on are treated. The book addresses graduate students and researchers in physics and optical engineering.
Incorporating chaos theory into psychology and the life sciences, this text includes empirical studies of neural encoding, memory, eye movements, warfare, business cycles and selection of time series analysis algorithms. There are theoretical chapters on emergence and social dynamics, and clinical contributions dealing with: the measurement of quality of life for psychiatric patients; psychosis; the organization of self; and the role of love in family dynamics. Finally ideas from non-linear dynamics are applied to understanding the creative process.
Contains both an exhaustive introduction to the subject as well as a detailed discussion of fundamental problems and research results. Despite the unified presentation of the subject, care has been taken to present the material in largely self-contained chapters.
Centered around major topic areas of both theoretical and practical importance, the World Congress on Neural Networks provides its registrants -- from a diverse background encompassing industry, academia, and government -- with the latest research and applications in the neural network field.
This book gives an introduction to the mathematical theory of cooperative behavior in active systems of various origins, both natural and artificial. It is based on a lecture course in synergetics which I held for almost ten years at the University of Moscow. The first volume deals mainly with the problems of pattern fonnation and the properties of self-organized regular patterns in distributed active systems. It also contains a discussion of distributed analog information processing which is based on the cooperative dynamics of active systems. The second volume is devoted to the stochastic aspects of self-organization and the properties of self-established chaos. I have tried to avoid delving into particular applications. The primary intention is to present general mathematical models that describe the principal kinds of coopera tive behavior in distributed active systems. Simple examples, ranging from chemical physics to economics, serve only as illustrations of the typical context in which a particular model can apply. The manner of exposition is more in the tradition of theoretical physics than of in mathematics: Elaborate fonnal proofs and rigorous estimates are often replaced the text by arguments based on an intuitive understanding of the relevant models. Because of the interdisciplinary nature of this book, its readers might well come from very diverse fields of endeavor. It was therefore desirable to minimize the re quired preliminary knowledge. Generally, a standard university course in differential calculus and linear algebra is sufficient.
The papers presented in the congress can roughly be classified into the following categories: theoretical and statistical mathematics applied to biological systems; image elaboration; dynamics of biological fluids; dynamics and statics of biological structures and computers in biology and medicine.
This book is an introduction to the perturbation theory for linear and nonlinear waves in dispersive and dissipative media. The main focus is on the direct asymptotic method which is based on the asymptotic expansion of the solution in series of one or more small parameters and demanding finiteness of the perturbations; this results in slow variation of the main-order solution. The method, which does not depend on integrability of basic equations, is applied to quasi-harmonic and non-harmonic periodic waves, as well as to localized waves such as solitons, kinks, and autowaves. The basic theoretical ideas are illustrated by many physical examples throughout the book.
In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electromechanics. This volume is the result of a workshop held in July 1989 at the Institute for Nonlinear Sciences at the University of California at San Diego that brought together scientists and clinicians with graduate students and postdoctoral fellows who shared an interest in the heart. The chapters were prepared by the invited speakers as didactic reviews of their subjects but also include the structure, mechanical properties, and function of the heart and the myocardium, electrical activity of the heart and myocardium, and mathematical models of heart function.