Download Free Autotrophic Nitrogen Removal In Granular Sequencing Batch Reactors Book in PDF and EPUB Free Download. You can read online Autotrophic Nitrogen Removal In Granular Sequencing Batch Reactors and write the review.

Wastewater treatment management, alongside many other industries, is seeking to attain a higher degree of sustainability for its processes by focusing on new technologies which minimise the consumption of resources or even recover them from the wastewater. Conventional removal of ammonium requires usually large amounts of energy for aeration and organic carbon for denitrification. This report focuses on making the nitrogen-removal process more sustainable. This can be achieved by a partial oxidation of ammonium to nitrite, after which the nitrate produced can be converted into nitrogen gas with the rest of ammonium under anoxic conditions. The treatment of nitrogen-rich water can be carried out beneficially by a combination of the Sharon process with the Anammox process. In this combined process less than 50% of the aeration energy is needed, no COD is required and an insignificant amount of sludge is produced. In this Report the potential of using this technology for the treatment of water arising from sludge treatment at a municipal wastewater treatment plant (WWTP) is evaluated and the results of the operation of the system are described in detail. This reject water contains a significant fraction of the N-load towards the wastewater treatment plant. The results are used in an economic evaluation of a potential full scale installation. The Combined Sharon/Anammox Process Report will provide an invaluable source of information for all those concerned with the efficient and sustainable treatment of wastewater including plant managers, process designers, consultants and researchers.
Aerobic Granular Sludge has recently received growing attention by researchers and technology developers, worldwide. Laboratory studies and preliminary field tests led to the conclusion that granular activated sludge can be readily established and profitably used in activated sludge plants, provided 'correct' process conditions are chosen. But what makes process conditions 'correct'? And what makes granules different from activated sludge flocs? Answers to these question are offered in Aerobic Granular Sludge. Major topics covered in this book include: Reasons and mechanism of aerobic granule formation Structure of the microbial population of aerobic granules Role, composition and physical properties of EPS Diffuse limitation and microbial activity within granules Physio-chemical characteristics Operation and application of granule reactors Scale-up aspects of granular sludge reactors, and case studies Aerobic Granular Sludge provides up-to-date information about a rapidly emerging new technology of biological treatment.
The scope of this comprehensive new edition of Handbook of Biological Wastewater Treatment ranges from the design of the activated sludge system, final settlers, auxiliary units (sludge thickeners and digesters) to pre-treatment units such as primary settlers and UASB reactors. The core of the book deals with the optimized design of biological and chemical nutrient removal. The book presents the state-of-the-art theory concerning the various aspects of the activated sludge system and develops procedures for optimized cost-based design and operation. It offers a truly integrated cost-based design method that can be easily implemented in spreadsheets and adapted to the particular needs of the user. Handbook of Biological Wastewater Treatment: Second Edition incorporates valuable new material that improves the instructive qualities of the first edition. The book has a new structure that makes the material more readily understandable and the numerous additional examples clarify the text. On the website www.wastewaterhandbook.com three free excel design spreadsheets for different configurations (secondary treatment with and without primary settling and nitrogen removal) can be downloaded to get the reader started with their own design projects. New sections have been added throughout: to explain the difference between true and apparent yield while the section on the F/M ratio, and especially the reasons not to use it, has been expanded; to demonstrate the effect of the oxygen recycle to the anoxic zones on both the denitrification capacity and the concept of available nitrate is explained in more detail. the latest developments on the causes and solution to sludge bulking and scum formation to show the rapid developments of innovative nitrogen removal and sludge separation problems the anaerobic pre-treatment section is completely rewritten based on the experiences obtained from an extensive review of large full-scale UASB based sewage treatment plants a new section on industrial anaerobic wastewater treatment three new appendices have been added. These deal with the calibration of the denitrification model, empirical design guidelines for final settler design (STORA/STOWA and ATV) and with the potential for development of denitrification in the final settler. A new chapter on moving bed biofilm reactors Handbook of Biological Wastewater Treatment: Second Edition is written for post graduate students and engineers in consulting firms and environmental protection agencies. It is an invaluable resource for everybody working in the field of wastewater treatment. Lecturer support material is available when adopted for university courses. This includes course material for the first 7 modules in the form of PDF printouts and an exercise file with questions and answers and a symbol list. Authors: Prof. dr. ir. A.C. van Haandel, Federal University of Campina Grande - Brazil and Ir. J.G.M. van der Lubbe, Biothane Systems International - Veolia, The Netherlands
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
On a global scale, sewage represents the main point-source of water pollution and is also the predominant source of nitrogen contamination in urban regions. The present research is focused on the study of the main challenges that need to be addressed in order to achieve a successful inorganic nitrogen post-treatment of anaerobic effluents in the mainstream. The post-treatment is based on autotrophic nitrogen removal. The challenges are classified in terms of operational features and system configuration, namely: (i) the short-term effects of organic carbon source, the COD/N ratio and the temperature on the autotrophic nitrogen removal; the results from this study confirms that the Anammox activity is strongly influenced by temperature, in spite of the COD source and COD/N ratios applied. (ii) The long-term performance of the Anammox process under low nitrogen sludge loading rate (NSLR) and moderate to low temperatures; it demonstrates that NSLR affects nitrogen removal efficiency, granular size and biomass concentration of the bioreactor. (iii) The Anammox cultivation in a closed sponge-bed trickling filter (CSTF) and (iv) the autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter (STF). Both types of Anammox sponge-bed trickling filters offer a plane technology with good nitrogen removal efficiency.
The report highlights various types of SBRs, design considerations and procedures, equipment required, and experiences gained from practical applications. This report will help both designers and operators of SBRs understand how to use this technology successfully. The focus is on the application of fill-and-draw, variable volume, periodically operated, unsteady-state principles to activated sludge systems. Research findings are presented, from both the laboratory and pilot and full scale SBRs. Also included is a description of trends for technological developments and a discussion of open questions regarding research, development, application, and operation. Contents Introduction Fundamentals of Periodic Processes General Overview of SBR Applications Design of Activated Sludge SBR Plants Equipment and Instrumentation Practical Experiences Evaluation of SBR Facilities in Australia Evaluation of SBR Facilities in the USA and Canada Evaluation of SBR Facilities in Germany Evaluation of SBR Facilities in France Evaluation of SBR facilities in Japan Scientific and Technical Report No. 10
This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.