Download Free Autotrophic Biological Nitrogen Removal In A Two Stage System At Mainstream Conditions Book in PDF and EPUB Free Download. You can read online Autotrophic Biological Nitrogen Removal In A Two Stage System At Mainstream Conditions and write the review.

Actualmente las estaciones depuradoras de aguas residuales (EDAR) urbanas están ampliamente implantadas en los países industrializados, puesto que es necesario realizar un tratamiento de las aguas residuales antes de verterlas al medioambiente. En los sistemas de tratamiento convencionales, los compuestos nitrogenados se eliminan mediante un tratamiento biológico de nitrificación autotrófica y desnitrificación heterotrófica, que garantiza una buena calidad del efluente. En estos tratamientos se necesita gran cantidad de aireación para la nitrificación y la mayoría de la materia orgánica del agua residual se destina a la desnitrificación en lugar de a la producción de biogás. Por tanto, las EDAR urbanas presentan un gran consumo energético y el principal reto en la actualidad es conseguir una depuradora urbana autosuficiente energéticamente. Una alternativa para conseguirlo es la implementación de la eliminación biológica autotrófica de nitrógeno (BNR) en la línea principal de aguas. El tratamiento consistiría en una primera etapa (A-Stage) en la cual se eliminaría toda la materia orgánica destinándola a la producción de biogás, y una segunda etapa (B-Stage) en la que se eliminaría el nitrógeno mediante el proceso BNR. El proceso BNR es un proceso en dos etapas. Primero, la mitad del amonio presente en el agua residual se oxida a nitrito mediante el proceso de nitritación parcial (PN), y a continuación el amonio restante y el nitrito generado se convierten en N2 mediante el proceso anammox, sin necesidad de oxígeno ni materia orgánica. El proceso BNR se ha aplicado al tratamiento de aguas con altas cargas de nitrógeno y temperaturas cálidas, pero nunca se ha implementado en el tratamiento de aguas residuales urbanas (bajas cargas y temperaturas). Recientemente, la investigación se ha centrado en el desarrollo del proceso BNR en un único reactor. Sin embargo, muchos de los estudios publicados mostraron el fallo del proceso PN en la operación a largo plazo al tratar agua urbana, e incluso aquellos sistemas con una operación estable alcanzaron bajas velocidades de eliminación de nitrógeno. En esta tesis se propuso la utilización de un sistema en dos etapas como alternativa para una mejor implementación del proceso BNR en la línea principal de aguas de una EDAR urbana. Así, el principal objetivo fue demostrar la estabilidad de los dos procesos implicados, PN y anammox, en dos reactores independientes tratando un agua residual urbana. En primer lugar se operó en continuo un reactor airlift con biomasa granular tratando un influente sintético que simulaba el efluente de la etapa A-Stage. Se trabajó a bajas temperaturas (hasta los 10 °C) y no solo se consiguió una operación estable a largo plazo sino que se obtuvieron altas velocidades de nitrificación y un efluente adecuado para un reactor anammox contiguo. Además, se determinaron las emisiones de N2O producidas en el reactor y se realizó un estudio del efecto de la temperatura sobre éstas. En segundo lugar se operó en continuo un reactor UASB (Upflow Anaerobic Sludge Blanket) realizando el proceso anammox a largo plazo. Por una parte, se presentó el reactor UASB como una buena alternativa para realizar el proceso anammox en la línea principal de aguas de la depuradora. Además se realizó un estudio exhaustivo del efecto de la velocidad ascensional en el reactor y del efecto de la baja temperatura en la actividad anammox. Por otra parte, el reactor UASB anammox no sólo mostró una operación estable a largo plazo tratando un agua residual urbana real, sino que también se alcanzaron altas velocidades de eliminación de nitrógeno a una temperatura de 11 °C. Conjuntamente, se realizó un estudio detallado de la biomasa desarrollada en ambos reactores desde los puntos de vista microbiológico, cinético y físico-químico, con el objetivo de relacionar estas características con la operación.
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
On a global scale, sewage represents the main point-source of water pollution and is also the predominant source of nitrogen contamination in urban regions. The present research is focused on the study of the main challenges that need to be addressed in order to achieve a successful inorganic nitrogen post-treatment of anaerobic effluents in the mainstream. The post-treatment is based on autotrophic nitrogen removal. The challenges are classified in terms of operational features and system configuration, namely: (i) the short-term effects of organic carbon source, the COD/N ratio and the temperature on the autotrophic nitrogen removal; the results from this study confirms that the Anammox activity is strongly influenced by temperature, in spite of the COD source and COD/N ratios applied. (ii) The long-term performance of the Anammox process under low nitrogen sludge loading rate (NSLR) and moderate to low temperatures; it demonstrates that NSLR affects nitrogen removal efficiency, granular size and biomass concentration of the bioreactor. (iii) The Anammox cultivation in a closed sponge-bed trickling filter (CSTF) and (iv) the autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter (STF). Both types of Anammox sponge-bed trickling filters offer a plane technology with good nitrogen removal efficiency.
Wastewater treatment management, alongside many other industries, is seeking to attain a higher degree of sustainability for its processes by focusing on new technologies which minimise the consumption of resources or even recover them from the wastewater. Conventional removal of ammonium requires usually large amounts of energy for aeration and organic carbon for denitrification. This report focuses on making the nitrogen-removal process more sustainable. This can be achieved by a partial oxidation of ammonium to nitrite, after which the nitrate produced can be converted into nitrogen gas with the rest of ammonium under anoxic conditions. The treatment of nitrogen-rich water can be carried out beneficially by a combination of the Sharon process with the Anammox process. In this combined process less than 50% of the aeration energy is needed, no COD is required and an insignificant amount of sludge is produced. In this Report the potential of using this technology for the treatment of water arising from sludge treatment at a municipal wastewater treatment plant (WWTP) is evaluated and the results of the operation of the system are described in detail. This reject water contains a significant fraction of the N-load towards the wastewater treatment plant. The results are used in an economic evaluation of a potential full scale installation. The Combined Sharon/Anammox Process Report will provide an invaluable source of information for all those concerned with the efficient and sustainable treatment of wastewater including plant managers, process designers, consultants and researchers.
Aerobic Granular Sludge has recently received growing attention by researchers and technology developers, worldwide. Laboratory studies and preliminary field tests led to the conclusion that granular activated sludge can be readily established and profitably used in activated sludge plants, provided 'correct' process conditions are chosen. But what makes process conditions 'correct'? And what makes granules different from activated sludge flocs? Answers to these question are offered in Aerobic Granular Sludge. Major topics covered in this book include: Reasons and mechanism of aerobic granule formation Structure of the microbial population of aerobic granules Role, composition and physical properties of EPS Diffuse limitation and microbial activity within granules Physio-chemical characteristics Operation and application of granule reactors Scale-up aspects of granular sludge reactors, and case studies Aerobic Granular Sludge provides up-to-date information about a rapidly emerging new technology of biological treatment.
The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.
This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.
This book systematically investigates the nitrogen removal characteristics of two screened aerobic denitrifying bacteria and their applications in nitrogen oxides emissions reduction. It reveals that Pseudomonas stutzeri PCN-1 possesses excellent capacity for aerobic nitrogen removal, regardless of whether nitrate, nitrite or N2O were taken as denitrification substrates. It also demonstrates that the rapid N2O reduction is due to the coordinate expression of denitrification genes. Further, the book discusses the bioaugmentation experiments conducted in denitrifying SBR and a pilot-scale Carrousel oxidation ditch, which confirmed that the strain could significantly enhance denitrification performance, reduce N2O emission and improve system stability. The second strain, P.aeruginosa PCN-2 accumulated negligible NO during aerobic nitrate and nitrite removal and efficiently removed NO from flue gas. This study is of great significance for potential applications of aerobic denitrification in mitigating nitrogen oxides emissions from biological nitrogen removal systems.
Mathematical Modelling and Computer Simulation of Activated Sludge Systems – Second Edition provides, from the process engineering perspective, a comprehensive and up-to-date overview regarding various aspects of the mechanistic (“white box”) modelling and simulation of advanced activated sludge systems performing biological nutrient removal. In the new edition of the book, a special focus is given to nitrogen removal and the latest developments in modelling the innovative nitrogen removal processes. Furthermore, a new section on micropollutant removal has been added. The focus of modelling has been shifting in the last years to models that can describe the performance of a whole plant (plant-wide modelling). The expanded part of this new edition introduces models describing the most important processes interrelated with the mainstream activated sludge systems as well as models describing the energy balance, operating costs and environmental impact. The complex process evaluation, including minimization of energy consumption and carbon footprint, is in line with the present and future wastewater treatment goals. By combining a general introduction and a textbook, this book serves both intermediate and more experienced model users, both researchers and practitioners, as a comprehensive guide to modelling and simulation studies. The book can be used as a supplemental material at graduate and post-graduate levels of wastewater engineering/modelling courses.