Download Free Autophagy Dysfunction In Alzheimers Disease And Dementia Book in PDF and EPUB Free Download. You can read online Autophagy Dysfunction In Alzheimers Disease And Dementia and write the review.

Autophagy Dysfunction in Alzheimer’s Disease and Dementia provides an overview for researchers and clinicians on the mechanisms involved in protein degradation in Alzheimer’s. The book discusses the implication of autophagy dysfunction in these diseases and how it causes degenerated proteins, including aggregated tau and aggregated amyloid protein. Other sections explores the possibilities of potential drug development through autophagy modulation, making this a great resource on the study of how autophagy dysfunction has been linked to the accumulation of misfolded proteins that cause death of neurons in Alzheimer’s and other neurodegenerative diseases. Discusses the implication of autophagy dysfunction in neurodegenerative diseases Highlights the mechanisms involved in protein degradation Explores the possibilities of drug development through autophagy modulation
Addresses the underlying biological abnormalities of Dementia in Alzheimer's Disease (DAD) in people with Down syndrome. Brings together recent research findings relating to the neuropathology, genetics, blood markers and neurophysiology of Alzheimer's disease in older adults with Down syndrome.
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
The overall goal of the International Study Group on the Pharmacology of Memory Disorders Associated with Ageing is to point out discoveries that shed light on the potential causes of Alzheimer's disease, its pathogenesis, and the biological mechanisms that could underlie its cure. This eighth meeting in the series, aims to stimulate research in dementia and increase the transfer of information from the basic sciences to physicians and the pharmaceutical industry."
Alzheimer’s disease is an increasingly common form of dementia and despite rising interest in discovery of novel treatments and investigation into aetiology, there are no currently approved treatments that directly tackle the causes of the condition. Due to its multifactorial pathogenesis, current treatments are directed against symptoms and even precise diagnosis remains difficult as the majority of cases are diagnosed symptomatically and usually confirmed only by autopsy. Alzheimer’s Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities provides a comprehensive overview from aetiology and neurochemistry to diagnosis, evaluation and management of Alzheimer's disease, and latest therapeutic approaches. Intended to provide an introduction to all aspects of the disease and latest developments, this book is ideal for students, postgraduates and researchers in neurochemistry, neurological drug discovery and Alzheimer’s disease.
This book establishes a bridge between exercise-mediated functional status of autophagy and non-communicable chronic diseases for elucidating and clarifying the corresponding signal pathways and underlying mechanisms. The book consists of 13 chapters focusing on the in-depth discussion on signal pathways for regulating the functional status of autophagy for the prevention, treatment and rehabilitation of chronic diseases, the optimization of exercise intervention strategies for common and frequently-occurring chronic diseases, and the development of exercise mimetic pills for the persons with disability for exercise performance, or the persons without willing to exercise. This book is interesting and will be useful to a wide readership in the various fields of exercise science, exercise fitness, sports medicine, preventive medicine, and functional foods.
The editor of this volume, having research interests in the field of ROS production and the damage to cellular systems, has identified a number of enzymes showing ·OH scavenging activities details of which are anticipated to be published in the near future as confirmatory experiments are awaited. It is hoped that the information presented in this book on NDs will stimulate both expert and novice researchers in the field with excellent overviews of the current status of research and pointers to future research goals. Clinicians, nurses as well as families and caregivers should also benefit from the material presented in handling and treating their specialised cases. Also the insights gained should be valuable for further understanding of the diseases at molecular levels and should lead to development of new biomarkers, novel diagnostic tools and more effective therapeutic drugs to treat the clinical problems raised by these devastating diseases.
This book provides a cutting-edge review of polyglutamine disorders. It primarily focuses on two main aspects: (1) the mechanisms underlying the pathologies’ development and progression, and (2) the therapeutic strategies that are currently being explored to stop or delay disease progression. Polyglutamine (polyQ) disorders are a group of inherited neurodegenerative diseases with a fatal outcome that are caused by an abnormal expansion of a coding trinucleotide repeat (CAG), which is then translated in an abnormal protein with an elongated glutamine tract (Q). To date, nine polyQ disorders have been identified and described: dentatorubral-pallidoluysian atrophy (DRPLA); Huntington’s disease (HD); spinal–bulbar muscular atrophy (SBMA); and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). The genetic basis of polyQ disorders is well established and described, and despite important advances that have opened up the possibility of generating genetic models of the disease, the mechanisms that cause neuronal degeneration are still largely unknown and there is currently no treatment available for these disorders. Further, it is believed that the different polyQ may share some mechanisms and pathways contributing to neurodegeneration and disease progression.
There is now considerable genetic evidence that the type 4 allele of the apolipoprotein E gene is a major susceptibility factor associated with late-onset Alzheimer's disease, the common form of the disease defined as starting after sixty years of age. The role of apolipoprotein E in normal brain metabolism and in the pathogenesis of Alzheimer's disease are new and exciting avenues of research. This book, written by the most outstanding scientists in this new filed, is the first presentation of results concerning the implications of apolipoprotein E on the genetics, cell biology, neuropathology, biochemistry, and therapeutic management of Alzheimer's disease.
Phytochemicals are naturally occurring bioactive compounds found in edible fruits, plants, vegetables, and herbs. Unlike vitamins and minerals, phytochemicals are not needed for the maintenance of cell viability, but they play a vital role in protecting neural cells from inflammation and oxidative stress associated with normal aging and acute and chronic age-related brain diseases. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the advances in our understanding of the potential neuroprotective benefits that these naturally occurring chemicals contain. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the role that a number of plant-based chemical compounds play in a wide variety of neurological disorders. Chapters explore the impact of phytochemicals on neurotraumatic disorders, such as stroke and spinal cord injury, alongside neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as neuropsychiatric disorders such as depression and schizophrenia. The chapters and sections of this book provide the reader with a big picture view of this field of research. Neuroprotective Effects of Phytochemicals in Neurological Disorders aims to present readers with a comprehensive and cutting edge look at the effects of phytochemicals on the brain and neurological disorders in a manner useful to researchers, neuroscientists, clinical nutritionists, and physicians.