Download Free Autonomic Computing And Networking Book in PDF and EPUB Free Download. You can read online Autonomic Computing And Networking and write the review.

Autonomic Computing and Networking presents introductory and advanced topics on autonomic computing and networking with emphasis on architectures, protocols, services, privacy & security, simulation and implementation testbeds. Autonomic computing and networking are new computing and networking paradigms that allow the creation of self-managing and self-controlling computing and networking environment using techniques such as distributed algorithms and context-awareness to dynamically control networking functions without human interventions. Autonomic networking is characterized by recovery from failures and malfunctions, agility to changing networking environment, self-optimization and self-awareness. The self-control and management features can help to overcome the growing complexity and heterogeneity of exiting communication networks and systems. The realization of fully autonomic heterogeneous networking introduces several research challenges in all aspects of computing and networking and related fields.
Autonomic computing and networking (ACN), a concept inspired by the human autonomic system, is a priority research area and a booming new paradigm in the field. Formal and Practical Aspects of Autonomic Computing and Networking: Specification, Development, and Verification outlines the characteristics, novel approaches of specification, refinement, programming and verification associated with ACN. The goal of ACN and the topics covered in this work include making networks and computers more self-organized, self- configured, self-healing, self-optimizing, self-protecting, and more. This book helpfully details the steps necessary towards realizing computer and network autonomy and its implications.
This textbook provides a practical perspective on autonomic computing. Through the combined use of examples and hands-on projects, the book enables the reader to rapidly gain an understanding of the theories, models, design principles and challenges of this subject while building upon their current knowledge. Features: provides a structured and comprehensive introduction to autonomic computing with a software engineering perspective; supported by a downloadable learning environment and source code that allows students to develop, execute, and test autonomic applications at an associated website; presents the latest information on techniques implementing self-monitoring, self-knowledge, decision-making and self-adaptation; discusses the challenges to evaluating an autonomic system, aiding the reader in designing tests and metrics that can be used to compare systems; reviews the most relevant sources of inspiration for autonomic computing, with pointers towards more extensive specialty literature.
The complexity of modern computer networks and systems, combined with the extremely dynamic environments in which they operate, is beginning to outpace our ability to manage them. Taking yet another page from the biomimetics playbook, the autonomic computing paradigm mimics the human autonomic nervous system to free system developers and administrators from performing and overseeing low-level tasks. Surveying the current path toward this paradigm, Autonomic Computing: Concepts, Infrastructure, and Applications offers a comprehensive overview of state-of-the-art research and implementations in this emerging area. This book begins by introducing the concepts and requirements of autonomic computing and exploring the architectures required to implement such a system. The focus then shifts to the approaches and infrastructures, including control-based and recipe-based concepts, followed by enabling systems, technologies, and services proposed for achieving a set of "self-*" properties, including self-configuration, self-healing, self-optimization, and self-protection. In the final section, examples of real-world implementations reflect the potential of emerging autonomic systems, such as dynamic server allocation and runtime reconfiguration and repair. Collecting cutting-edge work and perspectives from leading experts, Autonomic Computing: Concepts, Infrastructure, and Applications reveals the progress made and outlines the future challenges still facing this exciting and dynamic field.
Autonomic networking aims to solve the mounting problems created by increasingly complex networks, by enabling devices and service-providers to decide, preferably without human intervention, what to do at any given moment, and ultimately to create self-managing networks that can interface with each other, adapting their behavior to provide the best service to the end-user in all situations. This book gives both an understanding and an assessment of the principles, methods and architectures in autonomous network management, as well as lessons learned from, the ongoing initiatives in the field. It includes contributions from industry groups at Orange Labs, Motorola, Ericsson, the ANA EU Project and leading universities. These groups all provide chapters examining the international research projects to which they are contributing, such as the EU Autonomic Network Architecture Project and Ambient Networks EU Project, reviewing current developments and demonstrating how autonomic management principles are used to define new architectures, models, protocols, and mechanisms for future network equipment. - Provides reviews of cutting-edge approaches to the management of complex telecommunications, sensors, etc. networks based on new autonomic approaches. This enables engineers to use new autonomic techniques to solve complex distributed problems that are not possible or easy to solve with existing techniques. - Discussion of FOCALE, a semantically rich network architecture for coordinating the behavior of heterogeneous and distributed computing resources. This provides vital information, since the data model holds much of the power in an autonomic system, giving the theory behind the practice, which will enable engineers to create their own solutions to network management problems. - Real case studies from the groups in industry and academia who work with this technology. These allow engineers to see how autonomic networking is implemented in a variety of scenarios, giving them a solid grounding in applications and helping them generate their own solutions to real-world problems.
Law, Human Agency and Autonomic Computing interrogates the legal implications of the notion and experience of human agency implied by the emerging paradigm of autonomic computing, and the socio-technical infrastructures it supports. The development of autonomic computing and ambient intelligence – self-governing systems – challenge traditional philosophical conceptions of human self-constitution and agency, with significant consequences for the theory and practice of constitutional self-government. Ideas of identity, subjectivity, agency, personhood, intentionality, and embodiment are all central to the functioning of modern legal systems. But once artificial entities become more autonomic, and less dependent on deliberate human intervention, criteria like agency, intentionality and self-determination, become too fragile to serve as defining criteria for human subjectivity, personality or identity, and for characterizing the processes through which individual citizens become moral and legal subjects. Are autonomic – yet artificial – systems shrinking the distance between (acting) subjects and (acted upon) objects? How ‘distinctively human’ will agency be in a world of autonomic computing? Or, alternatively, does autonomic computing merely disclose that we were never, in this sense, ‘human’ anyway? A dialogue between philosophers of technology and philosophers of law, this book addresses these questions, as it takes up the unprecedented opportunity that autonomic computing and ambient intelligence offer for a reassessment of the most basic concepts of law.
This book presents state-of-the-art research on architectures, algorithms, protocols and applications in pervasive computing and networks With the widespread availability of wireless and mobile networking technologies and the expected convergence of ubiquitous computing with these emerging technologies in the near future, pervasive computing and networking research and applications are among the hot topics on the agenda of researchers working on the next generation of mobile communications and networks. This book provides a comprehensive guide to selected topics, both ongoing and emerging, in pervasive computing and networking. It contains contributions from high profile researchers and is edited by leading experts in this field. The main topics covered in the book include pervasive computing and systems, pervasive networking security, and pervasive networking and communication. Key Features: Discusses existing and emerging communications and computing models, design architectures, mobile and pervasive wireless applications, technology and research challenges in pervasive computing systems, networking and communications Provides detailed discussions of key research challenges and open research issues in the field of autonomic computing and networking Offers information on existing experimental studies including case studies, implementation test-beds in industry and academia Includes a set of PowerPoint slides for each chapter for instructors adopting it as a textbook Pervasive Computing and Networking will be an ideal reference for practitioners and researchers working in the areas of communication networking and pervasive computing and networking. It also serves as an excellent textbook for graduate and senior undergraduate courses in computer science, computer engineering, electrical engineering, software engineering, and information engineering and science.
These proceedings contain the papers presented at the Third International ICST C- ference on Autonomic Computing and Communication Systems, Autonomics 2009, held at the Cyprus University of Technology, Limassol, Cyprus, during September 9–11, 2009. As for the previous editions of the conference, this year too the primary goal of the event was to allow people working in the areas of communication, design, progr- ming, use and fundamental limits of autonomics pervasive systems to meet and - change their ideas and experiences in the aforementioned issues. In maintaining the tradition of excellence of Autonomics, this year we accepted 11 high-quality papers out of 26 submitted and had 5 invited talks, covering various aspects of autonomic computing including applications, middleware, networking protocols, and evaluation. The wide interest in the autonomic systems is shown by the broad range of topics covered in the papers presented at the conference. All papers presented at the conf- ence are published here and some of them, which are considered particularly intere- ing, will be considered for publication in a special issue of the International Journal of Autonomics and Adaptive Communications Systems (IJAACS). The conference also hosted the First International Workshop on Agent-Based Social Simulation and Au- nomic Systems (ABSS@AS).
New paradigms for communication/networking systems are needed in order to tackle the emerging issues such as heterogeneity, complexity and management of evolvable infrastructures. In order to realize such advanced systems, approaches should become task- and knowledge-driven, enabling a service-oriented, requirement, and trust-driven development of communication networks. The networking and seamless integration of concepts, technologies and devices in a dynamically changing environment poses many challenges to the research community, including interoperability, programmability, management, openness, reliability, performance, context awareness, intelligence, autonomy, security, privacy, safety, and semantics. This edited volume explores the challenges of technologies to realize the vision where devices and applications seamlessly interconnect, intelligently cooperate, and autonomously manage themselves, and as a result, the borders of virtual and real world vanish or become significantly blurred.
This book introduces the concept of autonomic computing driven cooperative networked system design from an architectural perspective. As such it leverages and capitalises on the relevant advancements in both the realms of autonomic computing and networking by welding them closely together. In particular, a multi-faceted Autonomic Cooperative System Architectural Model is defined which incorporates the notion of Autonomic Cooperative Behaviour being orchestrated by the Autonomic Cooperative Networking Protocol of a cross-layer nature. The overall proposed solution not only advocates for the inclusion of certain Decision Making Entities, but it also provides all the necessary implementation guidelines along with the pertinent standardisation orientated insight.