Download Free Automotive Electronics Reliability Book in PDF and EPUB Free Download. You can read online Automotive Electronics Reliability and write the review.

Vehicle reliability problems continue to be the news because of major vehicle recalls from several manufacturers. This book includes 40 SAE technical papers, published from 2007 through 2010, that describe the latest research on automotive electronics reliability technology. This book will help engineers and researchers focus on the design strategies being used to minimize electronics reliability problems, and how to test and verify those strategies. After an overview of durability, risk assessment, and failure mechanisms, this book focuses on state-of-the-art techniques for reliability-based design, and reliability testing and verification. Topics include: powertrain control monitoring distributed automotive embedded systems model-based design x-by-wire systems battery durability design verification fault tree analysis The book also includes editor Ronald K. Jurgen’s introduction ,“Striving for Maximum Reliability in a Highly Complex Electronic Environment”, and a concluding section on the future of electronics reliability, including networking technology, domain control units, the use of AUTOSAR, and embedded software.
Vehicle reliability problems continue to be the news because of major vehicle recalls from several manufacturers. This book includes 40 SAE technical papers, published from 2007 through 2010, that describe the latest research on automotive electronics reliability technology. This book will help engineers and researchers focus on the design strategies being used to minimize electronics reliability problems, and how to test and verify those strategies. After an overview of durability, risk assessment, and failure mechanisms, this book focuses on state-of-the-art techniques for reliability-based design, and reliability testing and verification. Topics include: powertrain control monitoring distributed automotive embedded systems model-based design x-by-wire systems battery durability design verification fault tree analysis The book also includes editor Ronald K. Jurgen’s introduction ,“Striving for Maximum Reliability in a Highly Complex Electronic Environment”, and a concluding section on the future of electronics reliability, including networking technology, domain control units, the use of AUTOSAR, and embedded software.
This compilation of terms, acronyms and symbols was drawn from usage which should be familiar to those working in automotive electronics reliability. Terms are included which are used to describe how items, materials and systems are evaluated for reliability, how they fail, how failures are modeled and how failures are prevented. Terms are also included from the disciplines of designing for reliability, testing and failure analysis as well as the general disciplines of Quality and Reliability Engineering. This glossary is intended to augment SAE J1213, Glossary of Automotive Electronic Terms. Not applicable.
This handbook was designed to provide the automotive electronics community with an understanding of the concepts, principles, and methodologies concerning all aspects of automotive electronic systems reliability engineering. Chapters include: Reliability Terminology Associated with Automotive Electronics; Reliability Theory; Reliability Data Analysis; Regression Analysis; Reliability Specification and Allocation; Reliability Prediction; Reliability Design Guidelines; FMEA, FTA, and SCA; Reliability Demonstration and Reliability Growth. The handbook is based upon information from several sources, which are listed at the end of each chapter.
This document should be used as guidance for non-handbook based reliability predictions conducted on automotive electronics products. It presents a method that utilizes warranty and field repair data to calculate the failure rates of individual electronic components and predict the reliability of the entire electronic system. It assumes that the user has access to a database containing field return data with classification of components, times to failure, and a total number of components operating in the field. In early design activities (typically before the hardware is built), a reliability prediction is often required for the electronic components and systems in order to assess their future reliability and in many cases to meet customer specifications. Those specifications may include the allocated reliability for a particular electronic unit and in the cases of functional safety products to meet the ASIL (Automotive Safety and Integrity Level) requirement specified by the international functional safety standard ISO 26262.This Recommended Practice (RP) document will provide guidance on performing reliability predictions for automotive electronic products utilizing field return data or any other types of failure data available to an automotive electronics supplier. This document will cover the possible sources of data, types of the data required, ways to collect it, and the methodology of how to process these data to calculate the failure rates and the expected reliability. This document will also include a case study based on the data obtained by Delphi Electronics & Safety, a Tier 1 automotive supplier to illustrate the process of reliability prediction based on field return data.
Electrical and electronic reliability is a critical issue for automakers and suppliers as well as car buyers and dealers. The burden of reliability falls most heavily on automotive E/E engineers, system and software developers, component suppliers, and tools vendors. This book explores ways that the automotive industry continues to add E/E features while maintaining if not improving overall reliability. This book helps executives, decision-makers, and managers to quickly grasp the key drivers associated with E/E reliability in the automotive market. Academics who teach electronics and automotive engineering will also be interested in the book, as well as those in government who legislate and regulate automotive electronics. Author John Day interviewed nearly 50 experts on all facets of E/E systems and reliability during preparation of this manuscript. In addition, he culled information from press releases and presentations. He synthesized a massive amount of information and data into an easy-to-digest manuscript that gives a clear picture of the current state of E/E reliability and where the technology it is headed.