Download Free Automatic Upstream Control System For Canals Book in PDF and EPUB Free Download. You can read online Automatic Upstream Control System For Canals and write the review.

In many countries irrigated agriculture consumes a large proportion of the available water resources, often over 70% of the total. There is considerable pressure to release water for other uses and, as a sector, irrigated agriculture will have to increase the efficiency and productivity of its water use. This is particularly true for manually operated irrigation systems managed by government agencies, which provide water for a large number of users on small landholdings and represent 60% of the total irrigated area worldwide. --
Fractional-order Systems and Controls details the use of fractional calculus in the description and modeling of systems, and in a range of control design and practical applications. It is largely self-contained, covering the fundamentals of fractional calculus together with some analytical and numerical techniques and providing MATLAB® codes for the simulation of fractional-order control (FOC) systems. Many different FOC schemes are presented for control and dynamic systems problems. Practical material relating to a wide variety of applications is also provided. All the control schemes and applications are presented in the monograph with either system simulation results or real experimental results, or both. Fractional-order Systems and Controls provides readers with a basic understanding of FOC concepts and methods, so they can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques.
Sediment transport in irrigation canals influences to a great extent the sustainability of an irrigation system. Unwanted erosion or deposition will not only increase maintenance costs, but may also lead to unfair, unreliable and unequitable distribution of irrigation water to the end users. Proper knowledge of the characteristics, including behaviour and transport of sediment will help to design irrigation systems, plan effi cient and reliable water delivery schedules, to have a controlled deposition of sediments, to estimate and arrange maintenance activities, etc. The main aim of these lecture notes is to present a detailed analysis and physical and mathematical descriptions of sediment transport in irrigation canals and to describe the mathematical model SETRIC that predicts the sediment transport, deposition and entrainment rate as function of time and place for various flow conditions and sediment inputs. The model is typically suited for the simulation of sediment transport under the particular conditions of non-wide irrigation canals where the flow and sediment transport are strongly determined by the operation of the flow control structures. The lecture notes will contribute to an improved understanding of the behaviour of sediments in irrigation canals. They will also help to decide on the appropriate design of the system, the water delivery plans, to evaluate design alternatives and to achieve an adequate and reliable water supply to the farmers.