Download Free Automatic Control Systems And Components Book in PDF and EPUB Free Download. You can read online Automatic Control Systems And Components and write the review.

Real-world applications--Integrates real-world analysis and design applications throughout the text. Examples include: the sun-seeker system, the liquid-level control, dc-motor control, and space-vehicle payload control. * Examples and problems--Includes an abundance of illustrative examples and problems. * Marginal notes throughout the text highlight important points.
Advanced Control Systems: Theory and Applications provides an overview of advanced research lines in control systems as well as in design, development and implementation methodologies for perspective control systems and their components in different areas of industrial and special applications. It consists of extended versions of the selected papers presented at the XXV International Conference on Automatic Control “Automatics 2018” (September 18-19, 2018, Lviv, Ukraine) which is the main Ukrainian Control Conference organized by Ukrainian Association on Automatic Control (National member organization of IFAC) and Lviv National University “Lvivska Politechnica”. More than 100 papers were presented at the conference with topics including: mathematical problems of control, optimization and game theory; control and identification under uncertainty; automated control of technical, technological and biotechnical objects; controlling the aerospace craft, marine vessels and other moving objects; intelligent control and information processing; mechatronics and robotics; information measuring technologies in automation; automation and IT training of personnel; the Internet of things and the latest technologies. The book is divided into two main parts, the first concerning theory (7 chapters) and the second concerning applications (7 chapters) of advanced control systems. The first part “Advances in Theoretical Research on Automatic Control” consists of theoretical research results which deal with descriptor control impulsive delay systems, motion control in condition of conflict, inverse dynamic models, invariant relations in optimal control, robust adaptive control, bio-inspired algorithms, optimization of fuzzy control systems, and extremal routing problem with constraints and complicated cost functions. The second part “Advances in Control Systems Applications” is based on the chapters which consider different aspects of practical implementation of advanced control systems, in particular, special cases in determining the spacecraft position and attitude using computer vision system, the spacecraft orientation by information from a system of stellar sensors, control synthesis of rotational and spatial spacecraft motion at approaching stage of docking, intelligent algorithms for the automation of complex biotechnical objects, an automatic control system for the slow pyrolysis of organic substances with variable composition, simulation complex of hierarchical systems based on the foresight and cognitive modelling, and advanced identification of impulse processes in cognitive maps. The chapters have been structured to provide an easy-to-follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area. This book may be useful for researchers and students who are interesting in advanced control systems.
In recent years, automatic control systems have been rapidly increasing in importance in all fields of engineering. The applications of control systems cover a very wide range, from the design of precision control devices such as delicate electronic equipment to the design of massive equipment such as that used for the manufacture of steel or other industrial processes. Microprocessors have added a new dimension to the capability of control systems. New applications for automatic controls are continually being discovered. This book offers coverage of control engineering beginning with discussions of how typical control systems may be represented by block diagrams. This is accomplished by first demonstrating how to represent each component or part of a system as a simple block diagram, then explaining how these individual diagrams may be connected to form the overall block diagram, just as the actual components are connected to form the complete control system. Because actual control systems frequently contain nonlinear components, considerable emphasis is given to such components. The book goes on to show that important information concerning the basic or inherent operating characteristics of a system may be obtained from knowledge of the steady-state behavior. Continuing on in the book's coverage, readers will find information involving: how the linear differential equations that describe the operation of control systems may be solved algebraically by the use of Laplace transforms; general characteristics of transient behavior; the application of the root-locus method to the design of control systems; the use of the analog computer to simulate control systems; state-space methods;digital control systems; frequency-response methods; and system compensation.
This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
This book presents general problems of Automatic Control Theory as a base of aircraft control systems research and design. It consists of two parts: Continuous Control Systems and Digital Control Systems. Problems of mathematical modeling, stability, accuracy, synthesis, etc. both for continuous and digital control systems are included. For this purpose the time- and frequency-domain approaches are utilized. Some design and compensation methods of the dynamic systems are presented. In spite of the wide known issues related to these problems there are few complete works concerned with computer application for analyses and design of the control systems.
An up-to-date, mainstream industrial electronics text often used for the last course in two-year electrical engineering technology and electro-mechanical technology programs. Focuses on current technology (digital controls, use of microprocessors) while including analog concepts. Balances industrial electronics and non-calculus controls topics. Covers all major topics: solid state controls, electric motors, sensors, and programmable controllers. Includes physics concepts and coverage of fuzzy logic. How to Use the Allen-Bradley 5, the most commonly used PLC, has been included as a tutorial appendix. Both Customary and SI units are used in examples.
The operation of each component is discussed and explained in detail in order to illustrate the function and action of each component in the composite system. Examples are used wherever possible to illustrate the principles discussed. Diagrammatic illustrations are used profusely throughout the book to make the descriptive text interesting and self-explanatory. Although a large number of books dealing with the theory of control engineering are available, most of them do not deal with the varied range of components used in modern control systems. This book is an attempt to fill this need. It comprehensively covers many typical components of primary interest to the control-system engineer. A number of different types of electrical, electromechanical, electronic, hydraulic and pneumatic control devices, which form integral parts of open-loop and closed-loop control systems, have been presented to enable the students to understand all the types of control systems or equipment that they may encounter in different fields of industry. This book is especially designed to cater to the need of a one-semester course in Control System Components, particularly for the undergraduate students of Instrumentation and Control Engineering. It will also be a highly useful text for the students of Electrical Engineering and Mechanical Engineering during their study of the theory of Control Engineering. This book will teach them about the components required to build practical control systems.
In a clear and readable style, Bill Bolton addresses the basic principles of modern instrumentation and control systems, including examples of the latest devices, techniques and applications. Unlike the majority of books in this field, only a minimal prior knowledge of mathematical methods is assumed. The book focuses on providing a comprehensive introduction to the subject, with Laplace presented in a simple and easily accessible form, complimented by an outline of the mathematics that would be required to progress to more advanced levels of study.Taking a highly practical approach, Bill Bolton combines underpinning theory with numerous case studies and applications throughout, to enable the reader to apply the content directly to real-world engineering contexts. Coverage includes smart instrumentation, DAQ, crucial health and safety considerations, and practical issues such as noise reduction, maintenance and testing. An introduction to PLCs and ladder programming is incorporated in the text, as well as new information introducing the various software programmes used for simulation.Problems with a full answer section are also included, to aid the reader's self-assessment and learning, and a companion website (for lecturers only) at http://textbooks.elsevier.com features an Instructor's Manual including multiple choice questions, further assignments with detailed solutions, as well as additional teaching resources.The overall approach of this book makes it an ideal text for all introductory level undergraduate courses in control engineering and instrumentation. It is fully in line with latest syllabus requirements, and also covers, in full, the requirements of the Instrumentation & Control Principles and Control Systems & Automation units of the new Higher National Engineering syllabus from Edexcel.* Assumes minimal prior mathematical knowledge, creating a highly accessible student-centred text* Problems, case studies and applications included throughout, with a full set of answers at the back of the book, to aid student learning, and place theory in real-world engineering contexts* Free online lecturer resources featuring supporting notes, multiple-choice tests, lecturer handouts and further assignments and solutions
This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.