Download Free Automated Theorem Proving In Software Engineering Book in PDF and EPUB Free Download. You can read online Automated Theorem Proving In Software Engineering and write the review.

Growing demands for the quality, safety, and security of software can only be satisfied by the rigorous application of formal methods during software design. This book methodically investigates the potential of first-order logic automated theorem provers for applications in software engineering. Illustrated by complete case studies on protocol verification, verification of security protocols, and logic-based software reuse, this book provides techniques for assessing the prover's capabilities and for selecting and developing an appropriate interface architecture.
An overview of ATP techniques for the non-specialist, it discusses all the main approaches to proof: resolution, natural deduction, sequentzen, and the connection calculi. Also discusses strategies for their application and three major implemented systems. Looks in detail at the new field of ``inductionless induction'' and brings out its relationship to the classical approach to proof by induction.
A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issues are not neglected. This does not mean, of course, that the book will be of no interest to philosophers or mathematicians. It does contain a thorough presentation of formal logic and many proof techniques, and as such it contains all the material one would expect to find in a course in formal logic covering completeness but not incompleteness issues. The first item to be addressed is, what are we talking about and why are we interested in it. We are primarily talking about truth as used in mathematical discourse, and our interest in it is, or should be, self-evident. Truth is a semantic concept, so we begin with models and their properties. These are used to define our subject.
A one-stop reference, self-contained, with theoretical topics presented in conjunction with implementations for which code is supplied.
This book constitutes the refereed proceedings of the 9th International Conference on Software Engineering and Formal Methods, SEFM 2011, held in Montevideo, Uruguay, in November 2011. The 22 revised regular papers presented together with 1 short paper, 2 tool papers, and 4 keynote talks were carefully reviewed and selected from 105 initial abstracts and 85 full submissions. Besides the regular session the conference held a special track devoted to "Modeling for Sustainable Development" with 5 accepted papers - selected from 7 submissions - that are also part of this volume. The aim of SEFM is to advance the state of the art in formal methods, to scale up their application in software industry and to encourage their integration with practical engineering methods.
This textbook presents an introduction to the mathematical foundations of software engineering. It presents the rich applications of mathematics in areas such as error-correcting codes, cryptography, the safety and security critical fields, the banking and insurance fields, as well as traditional engineering applications. Topics and features: Addresses core mathematics for critical thinking and problem solving Discusses propositional and predicate logic and various proof techniques to demonstrate the correctness of a logical argument. Examines number theory and its applications to cryptography Considers the underlying mathematics of error-correcting codes Discusses graph theory and its applications to modelling networks Reviews tools to support software engineering mathematics, including automated and interactive theorem provers and model checking Discusses financial software engineering, including simple and compound interest, probability and statistics, and operations research Discusses software reliability and dependability and explains formal methods used to derive a program from its specification Discusses calculus, matrices, vectors, complex numbers, and quaternions, as well as applications to graphics and robotics Includes key learning topics, summaries, and review questions in each chapter, together with a useful glossary This practical and easy-to-follow textbook/reference is ideal for computer science students seeking to learn how mathematics can assist them in building high-quality and reliable software on time and on budget. The text also serves as an excellent self-study primer for software engineers, quality professionals, and software managers.
The programming of a proof procedure is discussed in connection with trial runs and possible improvements. (Author).