Download Free Automated Modified Fischer Retorts For Assaying Oil Shale And Bitominous Materials Book in PDF and EPUB Free Download. You can read online Automated Modified Fischer Retorts For Assaying Oil Shale And Bitominous Materials and write the review.

"Written by engineers for engineers (with over 150 International Editorial Advisory Board members),this highly lauded resource provides up-to-the-minute information on the chemical processes, methods, practices, products, and standards in the chemical, and related, industries. "
Coal technology; Gas technology; Petroleum technology; Chemical fuels technology; Nuclear energy technology; Solar energy technology; Geothermal energy technology; Hydropower technology; Power technology trends.
This volume of the IARC Monographs provides evaluations of the carcinogenicity of bitumens and their emissions, the N-heterocyclic polycyclic aromatic hydrocarbons benz[a]acridine, benz[c]acridine, dibenz[a,h]acridine, dibenz[a,j]acridine, dibenz[c,h]acridine, carbazole and 7H-dibenzo[c,g]carbazole, as well as the S-hetrocyclic polycyclic aromatic hydrocarbons benzo[b]naphtho[2,1-d]thiophene and dibenzothiophene. Bitumens are produced by distillation of crude oil during petroleum refining, and also occur naturally. Bitumens can be divided into six broad classes, according to their physical properties and specifications required for different applications. The major use (about 80%) of bitumens is for road paving; other uses include roofing, waterproofing, sealing and painting. The term "bitumen" should not be confused with "asphalt", which refers to the mixture of bitumen (4-10% by weight), small stones, sand and filler used for road paving. Bitumens are complex mixtures that contain a large number of organic chemical compounds. Application of bitumens may generate emissions (fumes and vapours) that may contain, among volatile and non-volatile compounds, a number of known or probable carcinogens. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of various occupations that entail exposure to bitumens and bitumen emissions, including road paving, roofing, and application of mastic asphalt, and to various heterocyclic polycyclic aromatic compounds.
Unconventional heavy crude oils are replacing the conventional light crude oils slowly but steadily as a major energy source. Heavy crude oils are cheaper and present an opportunity to the refiners to process them with higher profit margins. However, the unfavourable characteristics of heavy crude oils such as high viscosity, low API gravity, low H/C ratio, chemical complexity with high asphaltenes content, high acidity, high sulfur and increased level of metal and heteroatom impurities impede extraction, pumping, transportation and processing. Very poor mobility of the heavy oils, due to very high viscosities, significantly affects production and transportation. Techniques for viscosity reduction, drag reduction and in-situ upgrading of the crude oil to improve the flow characteristics in pipelines are presented in this book. The heavier and complex molecules of asphaltenes with low H/C ratios present many technological challenges during the refining of the crude oil, such as heavy coking on catalysts. Hydrogen addition and carbon removal are the two approaches used to improve the recovery of value-added products such as gasoline and diesel. In addition, the heavy crude oil needs pre-treatment to remove the high levels of impurities before the crude oil can be refined. This book introduces the major challenges and some of the methods to overcome them.