Download Free Augmenting Vehicle Localization With Visual Context Book in PDF and EPUB Free Download. You can read online Augmenting Vehicle Localization With Visual Context and write the review.

This works describes an approach to lane-precise localization on current digital maps. A particle filter fuses data from production vehicle sensors, such as GPS, radar, and camera. Performance evaluations on more than 200 km of data show that the proposed algorithm can reliably determine the current lane. Furthermore, a possible architecture for an intuitive route guidance system based on Augmented Reality is proposed together with a lane-change recommendation for unclear situations.
Throughout much of machine vision’s early years the infrared imagery has suffered from return on investment despite its advantages over visual counterparts. Recently, the ?scal momentum has switched in favor of both manufacturers and practitioners of infrared technology as a result of today’s rising security and safety challenges and advances in thermographic sensors and their continuous drop in costs. This yielded a great impetus in achieving ever better performance in remote surveillance, object recognition, guidance, noncontact medical measurements, and more. The purpose of this book is to draw attention to recent successful efforts made on merging computer vision applications (nonmilitary only) and nonvisual imagery, as well as to ?ll in the need in the literature for an up-to-date convenient reference on machine vision and infrared technologies. Augmented Perception in Infrared provides a comprehensive review of recent deployment of infrared sensors in modern applications of computer vision, along with in-depth description of the world’s best machine vision algorithms and intel- gent analytics. Its topics encompass many disciplines of machine vision, including remote sensing, automatic target detection and recognition, background modeling and image segmentation, object tracking, face and facial expression recognition, - variant shape characterization, disparate sensors fusion, noncontact physiological measurements, night vision, and target classi?cation. Its application scope includes homeland security, public transportation, surveillance, medical, and military. Mo- over, this book emphasizes the merging of the aforementioned machine perception applications and nonvisual imaging in intensi?ed, near infrared, thermal infrared, laser, polarimetric, and hyperspectral bands.
Data will not help you if you can't see it where you need it. Or can't collect it where you need it. Upon these principles, wearable technology was born. And although smart watches and fitness trackers have become almost ubiquitous, with in-body sensors on the horizon, the future applications of wearable computers hold so much more. A trusted refer
This book constitutes the refereed proceedings of the Fourth International Conference on Advances in Visual Informatics, IVIC 2015, held in Bangi, Malaysia, in November 2015. The five keynotes and 45 papers presented were carefully reviewed and selected from 82 initial submissions. The papers are organized in four tracks on visualization and big data; machine learning and computer vision; computer graphics; as well as virtual reality.
This book presents the augmented reality (AR) and virtual reality (VR) automotive applications. It unites automobile with a leading technology i.e. augmented and virtual reality and uses the advantages of the latter to solve the problems faced by the former. The book highlights the reasons for the growing abundance and complexity in this sector. Virtual and augmented reality presents a powerful engineering tool that finds application in various engineering fields. It brings new possibilities that result is increasing of productivity and reliability of production, quality of products and processes. The book further illustrates the possible challenges in its applications and suggests ways to overcome them. The book includes nine chapters focusing on automobile collision avoidance, self-driving cars, autonomous vehicles, navigation systems, and many more applications.
The Springer Handbook of Augmented Reality presents a comprehensive and authoritative guide to augmented reality (AR) technology, its numerous applications, and its intersection with emerging technologies. This book traces the history of AR from its early development, discussing the fundamentals of AR and its associated science. The handbook begins by presenting the development of AR over the last few years, mentioning the key pioneers and important milestones. It then moves to the fundamentals and principles of AR, such as photogrammetry, optics, motion and objects tracking, and marker-based and marker-less registration. The book discusses both software toolkits and techniques and hardware related to AR, before presenting the applications of AR. This includes both end-user applications like education and cultural heritage, and professional applications within engineering fields, medicine and architecture, amongst others. The book concludes with the convergence of AR with other emerging technologies, such as Industrial Internet of Things and Digital Twins. The handbook presents a comprehensive reference on AR technology from an academic, industrial and commercial perspective, making it an invaluable resource for audiences from a variety of backgrounds.
Bringing together a comprehensive and diverse collection of research, theory, and thought, this volume builds a foundation for the new field of Augmented Cognition research and development. The first section introduces general Augmented Cognition methods and techniques, including physiological and neurophysiological measures such as EEG and fNIR; a
The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physics-based vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action, activity and tracking; 3D; and 9 poster sessions.