Download Free Attosecond Molecular Dynamics Book in PDF and EPUB Free Download. You can read online Attosecond Molecular Dynamics and write the review.

Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.
Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump-probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called "post-Born-Oppenheimer dynamics", where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.
This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.
An introductory textbook on attosecond and strong field physics, covering fundamental theory and modeling techniques, as well as future opportunities and challenges.
Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This first book begins with a general description of underlying theories of molecular dynamics simulations and provides extensive coverage of molecular dynamics simulations in nanotechnology and energy. Coverage of this book includes: Recent advances of molecular dynamics theory Formation and evolution of nanoparticles of up to 106 atoms Diffusion and dissociation of gas and liquid molecules on silicon, metal, or metal organic frameworks Conductivity of ionic species in solid oxides Ion solvation in liquid mixtures Nuclear structures
Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.
Isolated attosecond pulses with photon energies in the extreme ultraviolet have provided a new capability to study few-femtosecond and sub-femtosecond dynamics in atomic and molecular systems. A novel regime of attosecond transient absorption measurements, in which the near-infrared pulse follows the attosecond pulse, is reviewed. The observed timescales of the decay of an absorption feature and oscillations due to quantum beating are derived and experimental considerations for these measurements are discussed. Attosecond transient absorption spectroscopy is then applied to observe quantum beating between the 2s22p5(2P3/2)3d and 2s22p5(2P1/2)3d electronically excited states of neon. The quantum beating is observed more prominently in one of the absorption features, and theoretical models of the effect of the near-infrared pulse are proposed to explain this asymmetry and characterize the observed beating. In the model that most closely agrees with the measurement, the beating is detected via Rabi cycling induced by the near-infrared pulse through an intermediate state (likely one of the 3p states), and this mechanism is shown to be strongly dependent on the spectrum of the near-infrared pulse. The isolated attosecond pulses used in these experiments are characterized using the photoelectron streaking method and the duration of these pulses is measured by iteratively reconstructing the streaking spectrograms. The effect on the streaking spectrogram of various pulse characteristics, such as duration, chirp, and the presence of satellite pulses, is described. Streaking spectrograms using low photon energy attosecond pulses are typically asymmetric. The reasons for this asymmetry are discussed and the challenges of reconstructing these low energy pulses are addressed. Finally, attosecond pulses are used to investigate superexcited states, or doubly excited states above the ionization potential, of the nitrogen molecule (N2). These states can decay via two competing channels, autoionization and predissociation. Time-of-flight mass spectrometry is applied to measure lifetimes of these states. Preliminary results are presented and improvements to the experimental design are proposed.
This thesis work was aimed to investigate dynamical processes in atoms and molecules on ultrafast time scales initiated by absorption of light in the extreme ultraviolet (XUV) regime. In particular, photoionization and photodissociation have been studied using pump-probe techniques involving ultrafast laser pulses. Such pulses are generated using either high-order harmonic generation (HHG) or free-electron lasers (FELs). The work of this thesis consists to a large extent in the development and application of a light source, enabling intense XUV attosecond pulses using HHG. In a long focusing geometry, a high-power infrared laser is frequency up-converted so as to generate a comb of high-order harmonics. An important aspect was the study of the spatial and temporal properties of the generated light pulses in order to gain control of their influence on the experiment. Combining theoretical and experimental results, the effect of the dipole phase on properties of high-order harmonics was explored, along with a metrological series of studies on the harmonic wavefront and the properties of the focusing optics used. Further, the HHG light source was employed to investigate photoionization. Individual angular momentum channels involved in the ionization were characterized using two-photon interferometry in combination with angle-resolved photoelectron detection. A method is applied allowing the full determination of channel-resolved amplitudes and phases of the matrix elements describing the single-photon ionization of neon. Finally, the process of photodissociation was investigated using light pulses generated via both HHG and FELs. The dissociation dynamics induced by multiple ionization of organic molecules were studied. Correlation techniques were used to unravel the underlying fragmentation dynamics, and additionally, pump-probe experiments provided insights into the time scales of the (pre-)dissociation dynamics.
Looking inside the wave cycle of light -- Confining strong light fields to the wave cycle -- Extreme nonlinear optics -- Measurements at the attosecond frontier -- Controlled attosecond-varying force fields -- Attosecond metrology of the first generation: AM1.0 -- Review of the birth of the new discipline -- Tracking electronic motions at the atomic scale -- Steering electronic motions at the atomic scale -- The technology platform: vacuum beamlines -- Towards the next generation: AM2.0 -- From capturing electrons to detecting diseases