Download Free Atomistic Modeling Of Nanostructures Via Molecular Dynamics And Time Scaling Methods Book in PDF and EPUB Free Download. You can read online Atomistic Modeling Of Nanostructures Via Molecular Dynamics And Time Scaling Methods and write the review.

Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.
Stringent industrial requirements of sophisticated performances and of circumstantial control for micro-devices or nanotechnology manufactures, and other types of machinery at multiple scales, can be satisfied often only by resort to or allowance for complex materials. The adjective 'complex' beckons to the fact that the substructure influences gross mechanical behaviour in a prominent way and interactions due to substructural changes are represented directly. The description of the mechanical behaviour of complex bodies proposes a wide class of challenging problems from macroscopic-to-nano-world. The collection of chapters composing this book aims to explore some aspects of these problems, proposing also new matter of discussion together with specific solutions. Contributors are Carlo Cercignani, Gianfranco Capriz, Pierre Degond, Antonio Fasano, Harley T. Johnson, Sukky Jun, Krishna Kannan, Wing Kam Liu, Alberto Mancini, Paolo Maria Mariano, Ingo Müller, Kumbakonan R. Rajagopal, Jan Jerzy Slawianowski. The book can be a useful tool for Scholars and PhD students addressing their research activity toward basic mathematical and physical problems accruing from the mechanics of materials.
The book covers a variety of applications of modern atomic-scale modeling of materials in the area of nanoscience and nanostructured systems. By highlighting the most recent achievements obtained within a single institute, at the forefront of material science studies, the authors are able to provide a thorough description of properties at the nanoscale. The areas covered are structural determination, electronic excitation behaviors, clusters on surface morphology, spintronics and disordered materials. For each application, the basics of methodology are provided, allowing for a sound presentation of approaches such as density functional theory (of ground and excited states), electronic transport and molecular dynamics in its classical and first-principles forms. The book is a timely collection of theoretical nanoscience contributions fully in line with current experimental advances.
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and Graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behavior in these low dimensional structures.
This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.
Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems, and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage, and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them.
This volume is a researcher's reference handbook to the many aspects of nanometer structures. Although intended as a source for the serious researcher, novices will find a great deal of interesting content. The theories covered include nanostructured thin films, photonic bandgap structures, quantum dots, carbon nanotubes, atomistic techniques, nanomechanics, nanofluidics, and quantum information processing. Modeling and simulation research on these topics have now reached a stage of maturity.
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
These days, advanced multiscale hybrid materials are being produced in the industry, studied by universities, and used in several applications. Unlike for macromaterials, it is difficult to obtain the physical, mechanical, electrical, and thermal properties of nanomaterials because of the scale. Designers, however, must have knowledge of these properties to perform any finite element analysis or durability and damage tolerance analysis. This is the book that brings this knowledge within easy reach. What makes the book unique is the fact that its approach that combines multiscale multiphysics and statistical analysis with multiscale progressive failure analysis. The combination gives a very powerful tool for minimizing tests, improving accuracy, and understanding the effect of the statistical nature of materials, in addition to the mechanics of advanced multiscale materials, all the way to failure. The book focuses on obtaining valid mechanical properties of nanocomposite materials by accurate prediction and observed physical tests, as well as by evaluation of test anomalies of advanced multiscale nanocomposites containing nanoparticles of different shapes, such as chopped fiber, spherical, and platelet, in polymeric, ceramic, and metallic materials. The prediction capability covers delamination, fracture toughness, impact resistance, conductivity, and fire resistance of nanocomposites. The methodology employs a high-fidelity procedure backed with comparison of predictions with test data for various types of static, fatigue, dynamic, and crack growth problems. Using the proposed approach, a good correlation between the simulation and experimental data is established.
Contributed papers of the workshop held at IIT, Madras, in 2003.