Download Free Atomic And Molecular Nonlinear Optics Book in PDF and EPUB Free Download. You can read online Atomic And Molecular Nonlinear Optics and write the review.

Laser physics and nonlinear optics are fields which have been intimately con nected from their beginning. Nonlinear optical effects such as second-har monic generation fulfil vital functions in many laser systems. Conversely advances in laser development quickly lead to progress in nonlinear optics. Of particular importance has been the development of tunable visible and uv lasers. With the ability to tune the laser frequency into close resonance with atomic transition frequencies, one can produce a large resonance en hancement of the nonlinearity. This permits the observation of a great var iety of nonlinear optical processes in dilute media such as atomic vapours. In recent years much of the research effort in nonlinear optics has been directed towards the use of such media, and it is this area which forms the subject of the present book. We review a wide range of nonlinear optical processes in atomic vapours, molecular gases and cryogenic liquids. At the same time we have tried to treat the subject in sufficient depth to be useful to research workers in the field. To achieve this, a measure of selectivity has been introduced by emphasising those nonlinear processes which are seen to have applications as sources of tunable coherent radiation. Thus we have not discussed in any detail those nonlinear processes whose main applications are in spec troscopy, such as Doppler-free two-photon absorption.
In recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations. This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, and mutual manipulation of light and matter. It also covers laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. In addition, latest results of the frontier of this science are presented. Problems and solutions help the reader to master and review the material.
The papers collected in this volume in honor of the late Stanisław Kielich cover an impressive range of modern subjects in molecular science. These subjects include, among others, the nonlinear optics of molecules, new approaches to the electronic structure of large molecules, the properties of carbon nanotubes, fluorescence polarization spectroscopy, computational studies of systems of fundamental interest to collision-induced spectroscopy, the simulation of fluids, NLO materials, chemical bonding in complex molecules, the NLO properties of functionalized DNA and the magnetic properties of molecular assemblies. Written by eminent specialists, the papers should offer valuable guidance to a wide community of graduate students and researchers.
This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.
The Optical Society of America (OSA) and SPIE – The International Society for Optical Engineering have awarded Robert Boyd with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Optics, 2nd edition.Nonlinear optics is essentially the study of the interaction of strong laser light with matter. It lies at the basis of the field of photonics, the use of light fields to control other light fields and to perform logical operations. Some of the topics of this book include the fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include: mechanisms of optical nonlinearity, second-harmonic and sum- and difference-frequency generation, photonics and optical logic, optical self-action effects including self-focusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials.· Covers all the latest topics and technology in this ever-evolving area of study that forms the backbone of the major applications of optical technology· Offers first-rate instructive style making it ideal for self-study· Emphasizes the fundamentals of non-linear optics rather than focus on particular applications that are constantly changing
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Quantum mechanics does away with the distinction between particles and waves, and one of the more interesting implications of the wave/particle duality - the discovery that atoms may be manipulated in ways analogous to the manipulation of light with lenses and mirrors - has formed the basis for the relatively new field of atom optics. Pierre Meystre's Atom Optics is the first book entirely devoted to this exciting area of research. Reference links to the leading journals in the field, links to research sites, graphics, and updates can be found online.
This volume provides an introduction to new optical methods for investigating the electronic, atomic, and magnetic properties of metallic surfaces and films. The methods have potentially valuable commercial applications and the book will be a useful guide to researchers in condensed matter physics and optics. The book begins with a chapter on linear Kerr spectroscopy and its application to magnetism and magnetic anisotropy effects. This is followed by two chapters discussing nonlinear magneto-optics, particularly the application of second harmonic light generation (SHG) to ultrathin films. The next chapter discusses time-resolved linear and second order reflectivity methods, and the final two chapters cover the electronic theory for nonlinear optics and nonlinear magneto-optics. These last chapters include discussions of current problems and directions for future research.
This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.