Download Free Atmospheric Simulation Using A Liquid Crystal Wavefront Controlling Device Book in PDF and EPUB Free Download. You can read online Atmospheric Simulation Using A Liquid Crystal Wavefront Controlling Device and write the review.

Test and evaluation of laser warning devices is important due to the increased use of 1aser devices in aerial applications. In this thesis, an atmospheric aberrating system is deve1oped to enable in-1ab testing of laser warning devices. This system employs laser 1ight at 632.8nm from a He1ium-Neon source and a spatial light modulator (SLM) to cause phase changes using a birefringent liquid crystaJ material. Before the system can be used, the SLM phase response must be quantified to ensure proper manipulation of index of refrnction. Additionally, diffraction from the SLM and rea1-world system scaling are addressed. Once completed, the atmospheric simulator is demonstmted and verified. Control of the SLM is achieved by 1oading 256 1evel bitmaps which dictate the desired index of refraction changes (called phase screens). Phase screens are created using a Fourier series technique applied to an atmospheric model in the form of a power spectrum. Five laser propagation scenarios are created, each with a set of screens describing turbulence for a particular case. Outgoing radiation from the SLM is then measured using a CCD targetboard for intensity and a Shack-Hartmann wavefront sensor for phase. Comparing system output phase statistics to atmospheric theory reveals a moderate correlation in a11 turbu1ence cases indicating desired performance. Intensity statistics are compared to the log normal distribution governed by the weak fluctuation regime. An error analysis reveals that strong turbu1ence data matches theory but that weak turbulence data is inconclusive due to measurement precision issues. As an additional check on performance, a wave optics computer simu1ation is created ana1ogous to the 1ab-bench design. Phase and intensity data affirm lab-bench results so that the aberrating SLM system can be operated confidently.
Liquid crystal spatial light modulator technology appropriate for high-resolution wavefront control has recently become commercially available. Some of these devices have several hundred thousand controllable degrees of freedom, more than two orders of magnitude greater than the largest conventional deformable mirror. We will present results of experiments to characterize the optical properties of these devices and to utilize them to correct aberrations in an optical system. We will also present application scenarios for these devices in high-power laser systems.
Learn how to overcome resolution limitations caused by atmospheric turbulence in Imaging Through Turbulence. This hands-on book thoroughly discusses the nature of turbulence effects on optical imaging systems, techniques used to overcome these effects, performance analysis methods, and representative examples of performance. Neatly pulling together widely scattered material, it covers Fourier and statistical optics, turbulence effects on imaging systems, simulation of turbulence effects and correction techniques, speckle imaging, adaptive optics, and hybrid imaging. Imaging Through Turbulence is written in tutorial style, logically guiding you through these essential topics. It helps you bring down to earth the complexities of coping with turbulence.
This proceedings volume presents the very latest developments in non-astronomical adaptive optics. This international workshop, the sixth in a biennial series, was the largest ever held and boasted significant involvement by industry. Adaptive optics is on the verge of being used in many products; indeed, at this meeting, the use of adaptive optics in DVD players was disclosed for the first time. Sample Chapter(s). Liquid Crystal Lenses For Correction Of Presbyopia (586 KB). Contents: Wavefront Correctors and Control: Liquid Crystal Lenses for Correction of Presbyopia (G Li & N Peyghambarian); Woofer-Tweeter Adaptive Optics (T Farrell & C Dainty); Wavefront Sensors: A Fundamental Limit for Wavefront Sensing (C Paterson); Direct Diffractive Image Simulation (A P Maryasov et al.); Adaptive Optics in Vision Science: A Study of Field Aberrations in the Human Eye (A V Goncharov et al.); Characterization of an AO-OCT System (J W Evans et al.); Adaptive Optics in Optical Storage and Microscopy: Commercialization of the Adaptive Scanning Optical Microscope (ASOM) (B Potsaid et al.); Towards Four Dimensional Particle Tracking for Biological Applications (H I Campbell et al.); Adaptive Optics in Lasers: New Results in High Power Lasers Beam Correction (A Kudryashov et al.); Adaptive Optics Control of Solid-State Lasers (W Lubeigt et al.); Adaptive Optics in Communication and Atmospheric Compensation: Fourier Image Sharpness Sensor for Laser Communications (K N Walker & R K Tyson); Adaptive Optics System for a Small Telescope (G Vdovin et al.); and other papers. Readership: Industry- and university-level researchers in optics and laser physics.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.