Download Free Atmospheric Satellite Observations Book in PDF and EPUB Free Download. You can read online Atmospheric Satellite Observations and write the review.

Atmospheric Satellite Observations: Variation Assimilation and Quality Assurance provides an invaluable reference for satellite data assimilation. Topics covered include linear algebra, frequently used statistical methods, the interpolation role of function fitting, filtering when dealing with real observations, minimization in data assimilation systems, 3D-Var and the inverse problem it solves, 4D-Var and adjoint techniques, and much more. The book concludes with satellite observation of hurricanes. - Contains mathematical concepts from several branches of study, including calculus, linear algebra, probability theory, functional analysis, and minimization - Illustrates quality assurance for satellite observations using real data examples - Includes a dedicated chapter on how different satellite instruments see hurricanes - Reviews theory, system development, and the numerical experiments of three- and four-dimensional variational data assimilation (3D-Var/4D-Var)
This report addresses the transition of research satellites, instruments, and calculations into operational service for accurately observing and predicting the Earth's environment. These transitions, which take place in large part between NASA and NOAA, are important for maintaining the health, safety, and prosperity of the nation, and for achieving the vision of an Earth Information System in which quantitative information about the complete Earth system is readily available to myriad users. Many transitions have been ad hoc, sometimes taking several years or even decades to occur, and others have encountered roadblocksâ€"lack of long-range planning, resources, institutional or cultural differences, for instanceâ€"and never reached fruition. Satellite Observations of Earth's Environment recommends new structures and methods that will allow seamless transitions from research to practice.
This book summarizes the author’s research resulted in developing the satellite radiothermovision approach which allows retrieving dynamical and energy characteristics of atmospheric mesoscale and synoptic-scale processes based on a close scheme of satellite passive radiometry data processing. The book introduces new applications of the satellite passive microwave observations to detailed systematic study of tropical cyclones’ evolution, climatology and characteristics of atmospheric river, parameters of global atmospheric circulation and their variations on climatically significant scales. The results presented in the book demonstrate a clear relation between the convergence/divergence of latent heat from the lower atmosphere to the center of tropical cyclone with variations of its intensity and provide a better insight into the tropical cyclone dynamical energy balance based on remote data.
This book shows how artificial intelligence, including neural networks and deep learning, can be applied to the processing of satellite data for Earth observation. The authors explain how to develop a set of libraries for the implementation of artificial intelligence that encompass different aspects of research.
Global environmental change is one of the most pressing international issues of the next century. There is a need to monitor the Earth's vital signs, from atmospheric ozone to tropical deforestation to sea level change. Models used to predict global changes have not yet fully used global observational data sets. Satellite data sets will be vital in addressing global change issues, in determining natural variability and monitoring global and regional changes. This timely volume provides an illustration of the variety of satellite-derived global data sets now available, their uses, advantages and limitations, and the range of variation that has already been observed with these data. A team of distinguished contributors provide a highly illustrated and accessible account suitable for the general scientific reader.
Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. - Presents new approaches in the field, along with further research opportunities, based on the latest satellite data - Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences - Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field
The impact of anthropogenic activities on our atmospheric environment is of growing public concern and satellite-based techniques now provide an essential component of observational strategies on regional and global scales. The purpose of this book is to summarise the state of the art in the field in general, while describing both key techniques and findings in particular. It opens with an historical perspective of the field together with the basic principles of remote sensing from space. Three chapters follow on the techniques and on the solutions to the problems associated with the various spectral regions in which observations are made. The particular challenges posed by aerosols and clouds are covered in the next two chapters. Of special importance is the accuracy and reliability of remote sensing data and these issues are covered in a chapter on validation. The final section of the book is concerned with the exploitation of data, with chapters on observational aspects, which includes both individual and synergistic studies, and on the comparison of global and regional observations with chemical transport and climate models and the added value that the interaction brings to both. The book concludes with scientific needs and likely future developments in the field, and the necessary actions to be taken if we are to have the global observation system that the Earth needs in its present, deteriorating state. The appendices provide a comprehensive list of satellite instruments, global representations of some ancillary data such as fire counts and light pollution, a list of abbreviations and acronyms, and a set of colourful timelines indicating the satellite coverage of tropospheric composition in the foreseeable future. Altogether, this book will be a timely reference and overview for anyone working at the interface of environmental, atmospheric and space sciences.
Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. - Provides study questions at the end of each chapter to aid learning - Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material - Includes the most recent technologies and their applications, allowing the reader to stay up-to-date - Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) - Presents examples of specific satellite missions, including those in which new technology has been introduced
Data assimilation methods were largely developed for operational weather forecasting, but in recent years have been applied to an increasing range of earth science disciplines. This book will set out the theoretical basis of data assimilation with contributions by top international experts in the field. Various aspects of data assimilation are discussed including: theory; observations; models; numerical weather prediction; evaluation of observations and models; assessment of future satellite missions; application to components of the Earth System. References are made to recent developments in data assimilation theory (e.g. Ensemble Kalman filter), and to novel applications of the data assimilation method (e.g. ionosphere, Mars data assimilation).
Remote observations of Earth from space serve an extraordinarily broad range of purposes, resulting in extraordinary demands on those at the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and elsewhere who must decide how to execute them. In research, Earth observations promise large volumes of data to a variety of disciplines with differing needs for measurement type, simultaneity, continuity, and long-term instrument stability. Operational needs, such as weather forecasting, add a distinct set of requirements for continual and highly reliable monitoring of global conditions. The Role of Small Satellites in NASA and NOAA Earth Observation Programs confronts these diverse requirements and assesses how they might be met by small satellites. In the past, the preferred architecture for most NASA and NOAA missions was a single large spacecraft platform containing a sophisticated suite of instruments. But the recognition in other areas of space research that cost-effectiveness, flexibility, and robustness may be enhanced by using small spacecraft has raised questions about this philosophy of Earth observation. For example, NASA has already abandoned its original plan for a follow-on series of major platforms in its Earth Observing System. This study finds that small spacecraft can play an important role in Earth observation programs, providing to this field some of the expected benefits that are normally associated with such programs, such as rapid development and lower individual mission cost. It also identifies some of the programmatic and technical challenges associated with a mission composed of small spacecraft, as well as reasons why more traditional, larger platforms might still be preferred. The reasonable conclusion is that a systems-level examination is required to determine the optimum architecture for a given scientific and/or operational objective. The implied new challenge is for NASA and NOAA to find intra- and interagency planning mechanisms that can achieve the most appropriate and cost-effective balance among their various requirements.