Download Free Atmospheric Remote Sensing By Microwave Radiometry Book in PDF and EPUB Free Download. You can read online Atmospheric Remote Sensing By Microwave Radiometry and write the review.

A rapidly growing area, remote sensing is crucial to the effort of modeling the earth's atmosphere and collecting such fundamental data as temperature, winds, pressures, water vapor distribution, clouds and other active constituents. This information enables us to test existing models of the atmosphere's energy balance, depletion of the ozone layer, climatic trends and other essential environmental data. Also discussed is the application of microwave remote sensing techniques to the atmospheres of planets other than the earth.
The ability to effectively monitor the atmosphere on a continuous basis requires remote sensing in microwave. Written for physicists and engineers working in the area of microwave sensing of the atmosphere, Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications is completely devoted to ground-based remote sensing. This text
2-10.3 Multiple Reflection Method
This book contains a selection of refereed papers presented at the 6 Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment held in Florence, Italy on March 15-18, 1999. Over the last two decades, passive microwave remote sensing has made considerable progress, and has achieved significant results in the study of the Earth's surface and atmosphere. Many years of observations with ground-based and satellite-borne sensors have made an important contribution to improving our knowledge of many geophysical processes of the Earth's environment and of global changes. The evolution in microwave radiometers aboard satellites has increased steadily over recent years. At the same time, many investigations have been carried out both to improve the algorithms for the retrieval of geophysical parameters and to develop new technologies. The book is divided into four main sections: three of these are devoted to the observation of the Earth's surface and atmosphere, and the fourth, to future missions and new technologies. The first section deals with the study of sea and land surfaces, and reports recent advances in remote sensing of ocean wind, sea ice, soil moisture and vegetation biomass, including electromagnetic modelling and the assimilation of radiometric data in models of land surface processes. The following two sections are devoted to the measurement of atmospheric quantities which are of fundamental importance in climatology and meteorology, and, since they influence radio-wave propagation, they also impact on several other fields, including geodesy, navigational satellite and radioastronomy. The last section presents an overview of new technologies and plans for future missions.
Combines theoretical concepts with experimental results on thermal microwave radiation to increase the understanding of the complex nature of terrestrial media. Emphasising on radiative transfer models, this book covers the terrestrial aspects, from clear to cloudy atmosphere, precipitation, ocean and land surfaces, vegetation, snow and ice.
This volume contains a collection of refereed papers which were presented at the Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, 14--17 February 1994, Rome, Italy. The last decade has marked a period of steady advancement and new developments in the observation of the terrestrial environment by passive microwave sensors. Both ground-based and satellite-borne systems have improved their accuracy, stability and spatial resolution and are providing a wealth of quantitative data, which are increasingly being employed in application-oriented projects. The contributions in this volume cover different fields of applications of microwave radiometry, the various observation and retrieval techniques and the recent technological developments. The articles are divided into four sections: measurement of atmospheric water vapor and cloud liquid, measurement of rain, observation of the surface, and new radiometric systems.
Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. - Provides study questions at the end of each chapter to aid learning - Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material - Includes the most recent technologies and their applications, allowing the reader to stay up-to-date - Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) - Presents examples of specific satellite missions, including those in which new technology has been introduced
This book will guide you in the use of remote sensing for military and intelligence gathering applications. It is a must read for students working on systems acquisition or for anyone interested in the products derived from remote sensing systems.
Atmospheric water plays a key role in climate. Water vapour is the most important greenhouse gas and its condensed forms exert a profound influence on both incoming solar and outgoing infrared radiation. Unfortunately, accurate, height-resolved global-scale measurements of atmospheric humidity are difficult to obtain. The change in concentration of five orders of magnitude form the ground to the stratosphere means there is no standard instrument that will measure everywhere. This has led to different measuring techniques, all with strengths and weaknesses. This book assesses all presently available techniques that are used in monitoring networks. Special weight is given to presenting the different technical concepts, the accuracy of different sensor types, addresses calibration issues and retrieval aspects.