Download Free Atmospheric Circulation Dynamics And Circulation Models Book in PDF and EPUB Free Download. You can read online Atmospheric Circulation Dynamics And Circulation Models and write the review.

General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.
This book describes the methods used to construct general circulation models of the atmosphere, and how such models perform in applications relating to the real climate and environmental systems. The author describes the fundamental dynamics of the atmospheric circulation, modelling of the general circulation, and applications of GCMs. The book consists of three parts: - Part 1 summarizes the physical processes involved, including basic equations, waves and instabilities; - Part 2 covers atmospheric structures, including various types of one- and two-dimensional structures and circulations; - Part 3 describes the basic notions for construction of general circulation models of the atmosphere and their applications. Atmospheric Circulation Dynamics and General Circulation Methods includes an appendix incorporating the basic data and mathematical formulae required to enable readers to construct GCMs for themselves.
Presenting a comprehensive discussion of general circulation models of the atmosphere, this book covers their historical and contemporary development, their societal context, and current efforts to integrate these models into wider earth-system models. Leading researchers provide unique perspectives on the scientific breakthroughs, overarching themes, critical applications, and future prospects for atmospheric general circulation models. Key interdisciplinary links to other subject areas such as chemistry, oceanography and ecology are also highlighted. This book is a core reference for academic researchers and professionals involved in atmospheric physics, meteorology and climate science, and can be used as a resource for graduate-level courses in climate modeling and numerical weather prediction. Given the critical role that atmospheric general circulation models are playing in the intense public discourse on climate change, it is also a valuable resource for policy makers and all those concerned with the scientific basis for the ongoing public-policy debate.
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.
Contributors. Foreword -- -- Preface -- -- A Arakawa -- Personal Perspective on the Early Years of General Circulation Modeling at UCLA. -- -- P.N. Edwards -- A Brief History of Atmospheric General Circulation Modeling. -- -- J.M. Lewis -- Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment. -- -- J. Hansen, et al. -- Climate Modeling in the Global Warming Debate. -- -- M. Halem, J Kouatchou, A. Hudson -- A Retrospective Analysis of the Pioneering Data Assimilation Experiments with the Mintz-Arakawa General Circulation Model. -- -- W. Schubert -- A Retrospective View of Arakawa's Ideas on Cumulus Parameterization. -- -- A. Kasahara -- On the Origin of Cumulus Parameterization for Numerical Prediction Models. -- -- K. Emanuel -- Quasi-Equilibrium Thinking. -- -- S. Moorthi -- Application of Relaxed Arakawa-Schubert Cumulus Parameterization t the NCEP Climate Model: Some Sensitivity Experiments. -- -- M. Ghil & A.W. Robertson -- Solving Problems with GCMs: Gene ...
The most comprehensive advanced graduate-level textbook on the subject This is a graduate-level textbook on the global circulation of the Earth's atmosphere—the large-scale system of winds by which energy is transported around the planet, from the tropical latitudes to the poles. Written by David Randall, one of the world’s foremost experts on the subject, it is the most comprehensive textbook on the topic. Intended for Earth science students who have completed some graduate-level coursework in atmospheric dynamics, the book will help students build on that foundation, preparing them for research in the field. The book describes the many phenomena of the circulation and explains them in terms of current ideas from fluid dynamics and thermodynamics, with frequent use of isentropic coordinates and using the methods of vector calculus. It emphasizes the key roles of water vapor and clouds, includes detailed coverage of energy flows and transformations, and pays close attention to scale interactions. The book also describes the major historical contributions of key scientists, giving a human dimension to the narrative, and it closes with a discussion of how the global circulation is evolving as the Earth’s climate changes. The most comprehensive graduate-level textbook on the subject Written by one of the world’s leading experts Connects global circulation and climate phenomena Addresses energy, moisture, and angular-momentum balance; the hydrologic cycle; and atmospheric turbulence and convection Emphasizes the energy cycle of the atmosphere; the role of moist processes; and circulation as an unpredictable, chaotic process Helps prepare students for research An online illustration package is available to professors
Despite major advances in the observation and numerical simulation of the atmosphere, basic features of the Earth's climate remain poorly understood. Integrating the available data and computational resources to improve our understanding of the global circulation of the atmosphere remains a challenge. Theory must play a critical role in meeting this challenge. This book provides an authoritative summary of the state of the art on this front. Bringing together sixteen of the field's leading experts to address those aspects of the global circulation of the atmosphere most relevant to climate, the book brings the reader up to date on the key frontiers in general circulation theory-including the nonlinear and turbulent global-scale dynamics that determine fundamental aspects of the Earth's climate. While emphasizing theory, as expressed through relatively simple mathematical models, it also draws connections to simulations with comprehensive general circulation models. Topics include the dynamics of storm tracks, interactions between wave dynamics and the hydrological cycle, monsoons, tropical and extratropical dynamics and interactions, and the processes controlling atmospheric humidity. An essential resource for graduate students in atmospheric, ocean, and climate sciences and for researchers seeking an overview of the field, The Global Circulation of the Atmosphere sets the standard for future research in a science that stands at a critical juncture. With a foreword by Edward Lorenz, the book includes chapters by Christopher Bretherton; Kerry Emanuel; Isaac Held; David Neelin; Raymond Pierrehumbert, Hélène Brogniez, and Rémy Roca; Alan Plumb; Walter Robinson; Tapio Schneider; Richard Seager and David Battisti; Adam Sobel; Kyle Swanson; and Pablo Zurita-Gotor and Richard Lindzen.
This first encyclopaedic reference on remote sensing describes the concepts, techniques, instrumentation, data analysis, interpretation, and applications of remote sensing, both airborne and space-based. Scientists, engineers, academics, and students can quickly access answers to their reference questions and direction for further study.
This book presents a unique and comprehensive view of the fundamental dynamical and thermodynamic principles underlying the large circulations of the coupled ocean-atmosphere system Dynamics of The Tropical Atmosphere and Oceans provides a detailed description of macroscale tropical circulation systems such as the monsoon, the Hadley and Walker Circulations, El Niño, and the tropical ocean warm pool. These macroscale circulations interact with a myriad of higher frequency systems, ranging from convective cloud systems to migrating equatorial waves that attend the low-frequency background flow. Towards understanding and predicting these circulation systems. A comprehensive overview of the dynamics and thermodynamics of large-scale tropical atmosphere and oceans is presented using both a “reductionist” and “holistic” perspectives of the coupled tropical system. The reductionist perspective provides a detailed description of the individual elements of the ocean and atmospheric circulations. The physical nature of each component of the tropical circulation such as the Hadley and Walker circulations, the monsoon, the incursion of extratropical phenomena into the tropics, precipitation distributions, equatorial waves and disturbances described in detail. The holistic perspective provides a physical description of how the collection of the individual components produces the observed tropical weather and climate. How the collective tropical processes determine the tropical circulation and their role in global weather and climate is provided in a series of overlapping theoretical and modelling constructs. The structure of the book follows a graduated framework. Following a detailed description of tropical phenomenology, the reader is introduced to dynamical and thermodynamical constraints that guide the planetary climate and establish a critical role for the tropics. Equatorial wave theory is developed for simple and complex background flows, including the critical role played by moist processes. The manner in which the tropics and the extratropics interact is then described, followed by a discussion of the physics behind the subtropical and near-equatorial precipitation including arid regions. The El Niño phenomena and the monsoon circulations are discussed, including their covariance and predictability. Finally, the changing structure of the tropics is discussed in terms of the extent of the tropical ocean warm pool and its relationship to the intensity of global convection and climate change. Dynamics of the Tropical Atmosphere and Oceans is aimed at advanced undergraduate and early career graduate students. It also serves as an excellent general reference book for scientists interested in tropical circulations and their relationship with the broader climate system.
For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes copious problems (with sample answers) to help students learn the material.