Download Free Atmospheric Aerosol Chemistry Book in PDF and EPUB Free Download. You can read online Atmospheric Aerosol Chemistry and write the review.

Atmospheric aerosols are an important and a highly complex component of the Earth’s atmosphere that alter the radiative forcing and the chemical composition of the gas phase. These effects have impacts on local air quality and the global climate. Atmospheric Aerosol Chemistry outlines research findings to date in aerosol chemistry and advances in analytical tools used in laboratory studies for studying their surface and bulk reactivity.
Ein Blick auf die morphologischen, physikalischen und chemischen Eigenschaften von Aerosolen aus den unterschiedlichsten natürlichen und anthropogenen Quellen trägt zum besseren Verständnis der Rolle bei, die Aerosolpartikel bei der Streuung und Absorption kurz- und langwelliger Strahlung spielen. Dieses Fachbuch bietet Informationen, die sonst schwer zu finden sind, und vermittelt ausführlich die Kenntnisse, die erforderlich sind, um die mikrophysikalischen, chemischen und Strahlungsparameter zu charakterisieren, die bei der Wechselwirkung von Sonnen- und Erdstrahlen so überaus wichtig sind. Besonderes Augenmerk liegt auf den indirekten Auswirkungen von Aerosolen auf das Klima im Rahmen des komplexen Systems aus Aerosolen, Wolken und der Atmosphäre. Auch geht es vorrangig um die Wirkungen natürlicher und anthropogener Aerosole auf die Luftqualität und die Umwelt, auf die menschliche Gesundheit und unser kulturelles Erbe. Mit einem durchgängig lösungsorientierten Ansatz werden nicht nur die Probleme und Gefahren dieser Aerosole behandelt, sondern auch praktikable Lösungswege aufgezeigt.
This book describes the characteristics of atmospheric aerosols, the chemistry of aerosols, and the interplay between aerosol modeling and global climate changes. This book helps to understand nature of aerosols and their role in the atmosphere.
Christian George, Barbara D’Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann - Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard - New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll - Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde - Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization. V. Faye McNeill, Neha Sareen, Allison N. Schwier - Surface-Active Organics in Atmospheric Aerosols.
Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study and will be welcomed enthusiastically by students and teachers alike.
The uncertainties in the aerosol effects on radiative forcing limit our knowledge of climate change, presenting us with an important research challenge. Aerosols in Atmospheric Chemistry introduces basic concepts about the characterization, formation, and impacts of ambient aerosol particles as an introduction to graduate students new to the field. Each chapter also provides an up-to-date synopsis of the latest knowledge of aerosol particles in atmospheric chemistry.
The book is divided into two sections. The first section presents characterization of atmospheric aerosols and their impact on regional climate from East Asia to the Pacific. Ground-based, air-born, and satellite data were collected and analyzed. Detailed information about measurement techniques and atmospheric conditions were provided as well. In the second section, authors provide detailed information about the organic and inorganic constituents of atmospheric aerosols. They discuss the chemical and physical processes, temporal and spatial distribution, emissions, formation, and transportation of aerosol particles. In addition, new measurement techniques are introduced. This book hopes to serve as a useful resource to resolve some of the issues associated with the complex nature of the interaction between atmospheric aerosols and climatology.
Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues such as climate change, stratospheric ozone depletion and air quality. In urban environments, aerosol particles can affect human health through their inhalation. Atmospheric aerosols originate from naturally occurring processes, such as volcanic emissions, sea spray and mineral dust emissions, or from anthropogenic activity such as industry and combustion processes. Aerosols present pathways for reactions, transport, and deposition that would not occur in the gas phase alone. Understanding the ways in which aerosols behave, evolve, and exert these effects requires knowledge of their formation and removal mechanism, transport processes, as well as their physical and chemical characteristics. Motivated by climate change and adverse health effects of traffic-related air pollution, aerosol research has intensified over the past couple of decades, and recent scientific advances offer an improved understanding of the mechanisms and factors controlling the chemistry of atmospheric aerosols. Environmental Chemistry of Aerosols brings together the current state of knowledge of aerosol chemistry, with chapters written by international leaders in the field. It will serve as an authoritative and practical reference for scientists studying the Earth’s atmosphere and as an educational and training resource for both postgraduate students and professional atmospheric scientists.
Gives a short and coherent presentation of the chemical composition of aerosol particles contributing to detrimental atmospheric and environmental conditions. After review of physical properties and measuring procedures, the formation of aerosol particles in the atmosphere determining aerosol composition is summarized. Present knowledge of particle composition is discussed, and the impact of aerosol particles on cloud formation, visibility degradation, climate variations, and ozone depletion is described. For graduate students and researchers in environmental science. The author is affiliated with the University of Veszprem. Distributed by ISBS. Annotation copyrighted by Book News, Inc., Portland, OR.
Aerosols and Atmospheric Chemistry is a collection of papers presented at the American Chemical Society Kendall Award Symposium honoring Professor Milton Kerker, held in Los Angeles, California, on March 28-April 2, 1971. Contributors focus on the physical chemistry of aerosols and their relationship to atmospheric chemistry. Topics covered range from the optical and dynamical properties of aerosols to the kinetics of growth of an aerosol in a flow reactor. The formation and chemical reactions of atmospheric particles are also discussed. This book is comprised of 30 chapters and begins with an overview of some of the optical and dynamical properties of aerosols, along with the preparation of submicron aerosols by condensation. The discussion then turns to the formation and properties of neutral ultrafine particles and small ions conditioned by gaseous impurities of the air; preparation of ultrafine metal oxide particles in a hydrogen-oxygen flame; production of aerosols by X-rays; and condensational growth of atmospheric aerosols. A comparison of synthetic and smog aerosols is also presented. The final section is devoted to the Los Angeles (Pasadena) Smog Project—its genesis, objectives, and scope—and provides a detailed description of the Minnesota Aerosol Analyzing System used in the project. This monograph will be a useful resource for chemists as well as students and researchers interested in aerosol and atmospheric chemistry.