Download Free Atmosphere And Air Pollution Book in PDF and EPUB Free Download. You can read online Atmosphere And Air Pollution and write the review.

Asian Atmospheric Pollution: Sources, Characteristics and Impacts provides a concise yet comprehensive treatment of all aspects of pollution and air quality monitoring, across all of Asia. It focuses on key regions of the world and details a variety of sources, their transport mechanism, long term variability and impacts on climate at local and regional scales. It also discusses the feedback on pollutants, on different meteorological parameters like radiative forcing, fog formations, precipitation, cloud characteristics and more. Drawing upon the expertise of multiple well-known authors from different countries to underline some of these key issues, it includes sections dedicated to treatment of pollutant sources, studying of pollutants and trace gases using satellite/station based observations and models, transport mechanisms, seasonal and inter-annual variability and impact on climate, health and biosphere in general. Asian Atmospheric Pollution: Sources, Characteristics and Impacts is a useful resource for scientists and students to understand the sources and dynamics of atmospheric pollution as well as their transport from one continent to other continents, helping the atmospheric modelling community to model different scenarios of the pollution, gauge its short term and long term impacts across regional to global scales and better understand the ramifications of episodic events. - Covers all of Asia in detail in terms of pollution - Focuses not only on local pollution, but on long-term transport of these pollutants and their impacts on other regions as well as the globe - Includes discussion of both particulate matter and greenhouse gases - Serves as a single resource on Asian air pollution and Impacts from the most current research across the globe including the US, Asia, Africa and Europe
This open access book not only describes the challenges of climate disruption, but also presents solutions. The challenges described include air pollution, climate change, extreme weather, and related health impacts that range from heat stress, vector-borne diseases, food and water insecurity and chronic diseases to malnutrition and mental well-being. The influence of humans on climate change has been established through extensive published evidence and reports. However, the connections between climate change, the health of the planet and the impact on human health have not received the same level of attention. Therefore, the global focus on the public health impacts of climate change is a relatively recent area of interest. This focus is timely since scientists have concluded that changes in climate have led to new weather extremes such as floods, storms, heat waves, droughts and fires, in turn leading to more than 600,000 deaths and the displacement of nearly 4 billion people in the last 20 years. Previous work on the health impacts of climate change was limited mostly to epidemiologic approaches and outcomes and focused less on multidisciplinary, multi-faceted collaborations between physical scientists, public health researchers and policy makers. Further, there was little attention paid to faith-based and ethical approaches to the problem. The solutions and actions we explore in this book engage diverse sectors of civil society, faith leadership, and political leadership, all oriented by ethics, advocacy, and policy with a special focus on poor and vulnerable populations. The book highlights areas we think will resonate broadly with the public, faith leaders, researchers and students across disciplines including the humanities, and policy makers.
Air pollution obscures vistas, damages ecosystems, and compromises human health. While some pollutants are regulated, as population grows and industries expand, intensive solutions are needed to deal with air pollution and its consequences. This book tackles these issues and shows readers what they can do to help conserve our planet's atmosphere.
Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.
The main objective of these updated global guidelines is to offer health-based air quality guideline levels, expressed as long-term or short-term concentrations for six key air pollutants: PM2.5, PM10, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In addition, the guidelines provide interim targets to guide reduction efforts of these pollutants, as well as good practice statements for the management of certain types of PM (i.e., black carbon/elemental carbon, ultrafine particles, particles originating from sand and duststorms). These guidelines are not legally binding standards; however, they provide WHO Member States with an evidence-informed tool, which they can use to inform legislation and policy. Ultimately, the goal of these guidelines is to help reduce levels of air pollutants in order to decrease the enormous health burden resulting from the exposure to air pollution worldwide.
Publisher Description
Complete coverage of air pollution from its sources to its health and environmental impacts, for advanced students and researchers.
"The combination of scientific and institutional integrity represented by this book is unusual. It should be a model for future endeavors to help quantify environmental risk as a basis for good decisionmaking." â€"William D. Ruckelshaus, from the foreword. This volume, prepared under the auspices of the Health Effects Institute, an independent research organization created and funded jointly by the Environmental Protection Agency and the automobile industry, brings together experts on atmospheric exposure and on the biological effects of toxic substances to examine what is knownâ€"and not knownâ€"about the human health risks of automotive emissions.
An understanding of long-range transport of air pollutants in the atmosphere requires a knowledge of the relevant atmospheric dynamic and chemical processes active at the regional scale as well as the temporal and spatial distribution of emissions. Numerical modeling is the most efficient way to determine the atmospheric transport, photochemistry and deposition pathways. The book therefore discusses the physical and chemical processes that determine regional air pollution and presents the relevant modeling techniques to describe the different atmospheric processes that are active at that scale.