Download Free Asymptotics In Statistics Book in PDF and EPUB Free Download. You can read online Asymptotics In Statistics and write the review.

This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.
This textbook is devoted to the general asymptotic theory of statistical experiments. Local asymptotics for statistical models in the sense of local asymptotic (mixed) normality or local asymptotic quadraticity make up the core of the book. Numerous examples deal with classical independent and identically distributed models and with stochastic processes. The book can be read in different ways, according to possibly different mathematical preferences of the reader. One reader may focus on the statistical theory, and thus on the chapters about Gaussian shift models, mixed normal and quadratic models, and on local asymptotics where the limit model is a Gaussian shift or a mixed normal or a quadratic experiment (LAN, LAMN, LAQ). Another reader may prefer an introduction to stochastic process models where given statistical results apply, and thus concentrate on subsections or chapters on likelihood ratio processes and some diffusion type models where LAN, LAMN or LAQ occurs. Finally, readers might put together both aspects. The book is suitable for graduate students starting to work in statistics of stochastic processes, as well as for researchers interested in a precise introduction to this area.
1 To the king, my lord, from your servant Balasi : 2 ... The king should have a look. Maybe the scribe who reads to the king did not understand . . . . shall I personally show, with this tablet that I am sending to the king, my lord, how the omen was written. 3 Really, he who has not followed the text with his finger cannot possibly understand it. This book is about optimally robust functionals and their unbiased esti mators and tests. Functionals extend the parameter of the assumed ideal center model to neighborhoods of this model that contain the actual distri bution. The two principal questions are (F): Which functional to choose? and (P): Which statistical procedure to use for the selected functional? Using a local asymptotic framework, we deal with both problems by linking up nonparametric statistical optimality with infinitesimal robust ness criteria. Thus, seemingly separate developments in robust statistics are presented in a unifying way.
Asymptotic methods provide important tools for approximating and analysing functions that arise in probability and statistics. Moreover, the conclusions of asymptotic analysis often supplement the conclusions obtained by numerical methods. Providing a broad toolkit of analytical methods, Expansions and Asymptotics for Statistics shows how asymptoti
This work presents a coherent introduction to asymptotic statistics. This Second Edition includes a new chapter on Gaussian and Poisson experiments because of their growing role in the field, especially in nonparametrics and semi-parametrics. Many chapters have been entirely rewritten and the nonparametrics material has been amplified.
Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.
A broad and unified methodology for robust statistics—with exciting new applications Robust statistics is one of the fastest growing fields in contemporary statistics. It is also one of the more diverse and sometimes confounding areas, given the many different assessments and interpretations of robustness by theoretical and applied statisticians. This innovative book unifies the many varied, yet related, concepts of robust statistics under a sound theoretical modulation. It seamlessly integrates asymptotics and interrelations, and provides statisticians with an effective system for dealing with the interrelations between the various classes of procedures. Drawing on the expertise of researchers from around the world, and covering over a decade's worth of developments in the field, Robust Statistical Procedures: Asymptotics and Interrelations: Discusses both theory and applications in its two parts, from the fundamentals to robust statistical inference Thoroughly explores the interrelations between diverse classes of procedures, unlike any other book Compares nonparametric procedures with robust statistics, explaining in detail asymptotic representations for various estimators Provides a timesaving list of mathematical tools for the problems under discussion Keeps mathematical abstractions to a minimum, in spite of its largely theoretical content Includes useful problems and exercises at the end of each chapter Offers strategies for more complex models when using robust statistical procedures Self-contained and rounded in approach, this book is invaluable for both applied statisticians and theoretical researchers; for graduate students in mathematical statistics; and for anyone interested in the influence of this methodology.