Download Free Asymptotic Behaviour Of Tame Harmonic Bundles And An Application To Pure Twistor D Modules Part 1 Book in PDF and EPUB Free Download. You can read online Asymptotic Behaviour Of Tame Harmonic Bundles And An Application To Pure Twistor D Modules Part 1 and write the review.

The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regular holonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regularholonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
"January 2009, volume 197, number 922 (Fourth of five numbers)."
This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.
The author studies Hardy spaces on C1 and Lipschitz domains in Riemannian manifolds. Hardy spaces, originally introduced in 1920 in complex analysis setting, are invaluable tool in harmonic analysis. For this reason these spaces have been studied extensively by many authors.
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
"Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area. This book, loosely based on the 2007 Augsburg, Germany workshop "From tQFT to tt* and Integrability", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it."--Publisher's website.
Exponential equations in free groups were studied initially by Lyndon and Schutzenberger and then by Comerford and Edmunds. Comerford and Edmunds showed that the problem of determining whether or not the class of quadratic exponential equations have solution is decidable, in finitely generated free groups. In this paper the author shows that for finite systems of quadratic exponential equations decidability passes, under certain hypotheses, from the factor groups to free products and one-relator products.
Considers indecomposable degree $n$ covers of Riemann surfaces with monodromy group an alternating or symmetric group of degree $d$. The authors show that if the cover has five or more branch points then the genus grows rapidly with $n$ unless either $d = n$ or the curves have genus zero, there are precisely five branch points and $n =d(d-1)/2$.
The author obtains some classification result for the mapping class groups of compact orientable surfaces in terms of measure equivalence. In particular, the mapping class groups of different closed surfaces cannot be measure equivalent. Moreover, the author gives various examples of discrete groups which are not measure equivalent to the mapping class groups. In the course of the proof, the author investigates amenability in a measurable sense for the actions of the mapping class group on the boundary at infinity of the curve complex and on the Thurston boundary and, using this investigation, proves that the mapping class group of a compact orientable surface is exact.