Download Free Asymptotic Behavior Of Monodromy Book in PDF and EPUB Free Download. You can read online Asymptotic Behavior Of Monodromy and write the review.

This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's.
This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation. Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space. Spectral data for such solutions are defined (following ideas of Hitchin and Bobenko) and the space of spectral data is described by an asymptotic characterization. Using methods of asymptotic estimates, the inverse problem for the spectral data is solved along a line, i.e. the solution u is reconstructed on a line from the spectral data. Finally, a Jacobi variety and Abel map for the spectral curve are constructed and used to describe the change of the spectral data under translation of the solution u. The book's primary audience will be research mathematicians interested in the theory of infinite-dimensional integrable systems, or in the geometry of constant mean curvature surfaces.
This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.
At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.
This book is devoted to the following finiteness theorem: A polynomial vector field on the real plane has a finite number of limit cycles. To prove the theorem, it suffices to note that limit cycles cannot accumulate on a polycycle of an analytic vector field. This approach necessitates investigation of the monodromy transformation (also known as the Poincare return mapping or the first return mapping) corresponding to this cycle. To carry out this investigation, this book utilizes five sources: The theory of Dulac, use of the complex domain, resolution of singularities, the geometric theory of normal forms, and superexact asymptotic series. In the introduction, the author presents results about this problem that were known up to the writing of the present book, with full proofs (except in the case of the results in the local theory and theorems on resolution of singularities).
This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Lax and Nirenberg are two of the most distinguished mathematicians of our times. Their work on partial differential equations (PDEs) over the last half-century has dramatically advanced the subject and has profoundly influenced the course of mathematics. A huge part of the development in PDEs during this period has either been through their work, motivated by it or achieved by their postdocs and students. A large number of mathematicians honored these two exceptional scientists in a week-long conference in Venice (June 1996) on the occasion of their 70th birthdays. This volume contains the proceedings of the conference, which focused on the modern theory of nonlinear PDEs and their applications. Among the topics treated are turbulence, kinetic models of a rarefied gas, vortex filaments, dispersive waves, singular limits and blow-up solutions, conservation laws, Hamiltonian systems and others. The conference served as a forum for the dissemination of new scientific ideas and discoveries and enhanced scientific communication by bringing together such a large number of scientists working in related fields. THe event allowed the international mathematics community to honor two of its outstanding members.
Mathematics & Modelling