Download Free Astrophysical Turbulence And Convection Book in PDF and EPUB Free Download. You can read online Astrophysical Turbulence And Convection and write the review.

Turbulence and convection are phenomena the existence of which has haunted astrophysicists because they pose such extremely difficult problems. The papers in this volume are taken from a conference held in February 1999 which brought together representatives of four different viewpoints: the computational physicist's numerical three-dimensional large-eddy simulations; theorists, who wish to simplify the equations into approximate, but useful one-dimensional recipes; astrophysicists, who see turbulence and convection as a subroutine; and experimentalists, who provide insights into what really happens at molecular levels in space - and keep everyone else honest.
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressible (in particular, supersonic) turbulence. Because of the similarities in the theoretical approach, these chapters start with a brief account of the corresponding methods developed in hydrodynamic turbulence. The final part of the book is devoted to astrophysical applications: turbulence in the solar wind, in accretion disks, and in the interstellar medium. This book is suitable for graduate students and researchers working in turbulence theory, plasma physics and astrophysics.
Convection is ubiquitous throughout the Universe, and during the last three decades it has become the largest factor of uncertainty in theoretical models of stars and in the interpretation of observations on the basis of such models. Recently, numerical simulations of convection have dramatically improved in their potential to take into account both the large scale properties of the flow itself and the microphysical properties of the fluid. Observations have become accurate enough to provide stringent tests for both numerical simulations and models of convection. IAU S239 was held to further understanding of convection, bringing together leading researchers in solar and stellar physics, the physics of planets, and of accretion disks. With reviews, research contributions, and detailed recordings of plenary discussions, this book is a valuable resource for professional astronomers and graduate students interested in the interdisciplinary study of one of the key physical processes in astrophysics.
Geophysical and Astrophysical Convection collects important papers from an international group of the world's foremost researchers in geophysical and astrophysical convection to present a concise overview of recent thinking in the field. Topics include: Atmospheric convection, solar and stellar convection, unsteady non-penetrative thermal convection, astrophysical convection and dynamos, dynamics of cumulus entertainment, turbulent convection: helical buoyant convection, transport phenomena, potential vorticity, rotating convective turbulence, and the modeling and simulation various types of convection and turbulence.
The most authoritative synthesis of the quantitative spectroscopic analysis of stellar atmospheres This book provides an in-depth and self-contained treatment of the latest advances achieved in quantitative spectroscopic analyses of the observable outer layers of stars and similar objects. Written by two leading researchers in the field, it presents a comprehensive account of both the physical foundations and numerical methods of such analyses. The book is ideal for astronomers who want to acquire deeper insight into the physical foundations of the theory of stellar atmospheres, or who want to learn about modern computational techniques for treating radiative transfer in non-equilibrium situations. It can also serve as a rigorous yet accessible introduction to the discipline for graduate students. Provides a comprehensive, up-to-date account of the field Covers computational methods as well as the underlying physics Serves as an ideal reference book for researchers and a rigorous yet accessible textbook for graduate students An online illustration package is available to professors at press.princeton.edu
Leading experts present the current state of knowledge of the subject of magnetoconvection from the viewpoint of applied mathematics.
Throughout his career Sir Robert Wilson has demonstrated that advances in a wide variety of fields in astrophysics and laboratory physics are achievable through the application of fundamental plasma spectroscopy. His work has included: optical studies that probed the nature of interstellar dust and first revealed the existence of O star winds; vacuum ultraviolet and X-ray diagnosis of fusion plasmas; rocket ultraviolet and X-ray observations of the Sun; and the conception, development and use of the International Ultraviolet Explorer (IUE) satellite which has contributed greatly to stellar, interstellar and extragalactic astrophysics. This volume contains reviews honouring Sir Robert and reflecting his interests.
Helioseismology has enabled us to probe the internal structure and dynamics of the Sun, including how its rotation varies in the solar interior. The unexpected discovery of an abrupt transition - the tachocline - between the differentially rotating convection zone and the uniformly rotating radiative interior has generated considerable interest and raised many fundamental issues. This volume contains invited reviews from distinguished speakers at the first meeting devoted to the tachocline, held at the Isaac Newton Institute. It provides a comprehensive account of the understanding of the properties and dynamics of the tachocline, including both observational results and major theoretical issues, involving both hydrodynamic and magnetohydrodynamic behaviour. The Solar Tachocline is a valuable reference for researchers and graduate students in astrophysics, heliospheric physics and geophysics, and the dynamics of fluids and plasmas.
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A. N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such 'fully developed turbulence' is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers. Elementary presentations of dynamical systems ideas, of probabilistic methods (including the theory of large deviations) and of fractal geometry make this a self-contained textbook.
There are two recurring themes in astrophysical and geophysical fluid mechanics: waves and turbulence. This book investigates how turbulence responds to rotation, stratification or magnetic fields, identifying common themes, where they exist, as well as the essential differences which inevitably arise between different classes of flow. The discussion is developed from first principles, making the book suitable for graduate students as well as professional researchers. The author focuses first on the fundamentals and then progresses to such topics as the atmospheric boundary layer, turbulence in the upper atmosphere, turbulence in the core of the earth, zonal winds in the giant planets, turbulence within the interior of the sun, the solar wind, and turbulent flows in accretion discs. The book will appeal to engineers, geophysicists, astrophysicists and applied mathematicians who are interested in naturally occurring turbulent flows.