Download Free Astronomy And Astrophysics Volume I Book in PDF and EPUB Free Download. You can read online Astronomy And Astrophysics Volume I and write the review.

This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help students in their self study.Undergraduate and graduate students in physics and astrophysics as well as all physicists who are interested in obtaining a quick grasp of astrophysical concepts will find this book useful.
A complete and comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The text presents an overview of the models developed to explain the stability, dynamics and evolution of the stars, and great care is taken to detail the various stages in a star's life. The authors have succeeded in producing a unique text based on their own pioneering work in stellar modeling. Since its publication, this textbook has come to be considered a classic by both readers and teachers in astrophysics. This study edition is intended for students in astronomy and physics alike.
High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, etc), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics processes are crucial. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.
This textbook provides the basic theoretical and practical knowledge of astronomy and astrophysics. It provides an overview from classical astronomy and observational methods to solar physics and astrophysics of stars and galaxies. It concludes with chapters on cosmology, astrobiology, and mathematical and numerical methods. Numerous color illustrations, examples of calculations, and exercises with solutions make this work a useful companion to undergraduate astronomy lectures. The book is suitable for students of physics and astronomy at teacher training level or in the Bachelor's degree - but also people interested in natural sciences with appropriate basic knowledge of mathematics and physics will find here an appealing introduction to the subject. This fourth edition has been updated and revised with respect to the latest developments in astronomy. The chapter on mathematical methods has been redesigned and the software used is now exclusively Python. From the contents: Spherical astronomy - History of astronomy - Celestial mechanics - Astronomical instruments - Physics of the bodies of the solar system - The Sun - State variables of the stars - Stellar atmospheres - Stellar structure - Stellar evolution - Interstellar matter - The Galaxy - Extragalactic systems - Cosmology - Astrobiology - Mathematical methods. This book is a translation of the original German 4th edition Einführung in Astronomie und Astrophysik by Arnold Hanslmeier, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
"This book provides a contemporary and complete introduction to astrophysics for astronomy and physics majors."--
This book provides a solid foundation in the Python programming language, numerical methods, and data analysis, all embedded within the context of astronomy and astrophysics. It not only enables students to learn programming with the aid of examples from these fields but also provides ample motivation for engagement in independent research. The book opens by outlining the importance of computational methods and programming algorithms in contemporary astronomical and astrophysical research, showing why programming in Python is a good choice for beginners. The performance of basic calculations with Python is then explained with reference to, for example, Kepler’s laws of planetary motion and gravitational and tidal forces. Here, essential background knowledge is provided as necessary. Subsequent chapters are designed to teach the reader to define and use important functions in Python and to utilize numerical methods to solve differential equations and landmark dynamical problems in astrophysics. Finally, the analysis of astronomical data is discussed, with various hands-on examples as well as guidance on astronomical image analysis and applications of artificial neural networks.
Fully updated and including data from space-based observations, this Third Edition is a comprehensive compilation of the facts and figures relevant to astronomy and astrophysics. As well as a vast number of tables, graphs, diagrams and formulae it also includes a comprehensive index and bibliography, allowing readers to easily find the information they require. The book contains information covering a diverse range of topics in addition to astronomy and astrophysics, including atomic physics, nuclear physics, relativity, plasma physics, electromagnetism, mathematics, probability and statistics, and geophysics. This handbook contains the most frequently used information in modern astrophysics, and will be an essential reference for graduate students, researchers and professionals working in astronomy and the space sciences. A website with links to extensive supplementary information and databases can be found at www.cambridge.org/9780521782425.
Astrophysics is often - with some justification - regarded as incomprehensible without at least degree-level mathematics. Consequently, many amateur astronomers skip the math, and miss out on the fascinating fundamentals of the subject. In Astrophysics Is Easy! Mike Inglis takes a quantitative approach to astrophysics that cuts through the incomprehensible mathematics, and explains the basics of astrophysics in accessible terms. The reader can view objects under discussion with commercial amateur equipment.