Download Free Astrocytic Synaptic Plasticity In Epilepsy From Synapses To Circuits Book in PDF and EPUB Free Download. You can read online Astrocytic Synaptic Plasticity In Epilepsy From Synapses To Circuits and write the review.

Jasper's Basic Mechanisms, Fourth Edition, is the newest most ambitious and now clinically relevant publishing project to build on the four-decade legacy of the Jasper's series. In keeping with the original goal of searching for "a better understanding of the epilepsies and rational methods of prevention and treatment.", the book represents an encyclopedic compendium neurobiological mechanisms of seizures, epileptogenesis, epilepsy genetics and comordid conditions. Of practical importance to the clinician, and new to this edition are disease mechanisms of genetic epilepsies and therapeutic approaches, ranging from novel antiepileptic drug targets to cell and gene therapies.
This book consists of five sections. The first section details methods for analyzing both presynaptic and postsynaptic function and emphasizes the molecular aspects of synapses. It describes ongoing studies of neurotransmitter release, voltage- sensitive ion channels, and electronic transmission at gap junctions. The second section focuses on the growing menagerie of neurotransmitters: their catagorization into chemical families, their relation to ion channels, their modulation by second messenger systems and their role in pharmacologic action. The third section considers the important relationship of transmitter diversity and synaptic types to the behavior of actual cellular networks. All of the studies described in these sections point to the necessity of considering interactions between anatomy, chemistry, physiology and pharmacology if synaptic function is to be understood at any one of these levels of analysis.
This second edition of 'Seizures and Epilepsy' is completely revised, due to tremendous advances in the understanding of the fundamental neuronal mechanisms underlying epileptic phenomena, as well as current diagnosis and treatment, which have been heavily influenced over the past several decades by seminal neuroscientific developments, particularly the introduction of molecular neurobiology, genetics, and modern neuroimaging. This resource covers a broad range of both basic and clinical epileptology.
First Published in 1995. Routledge is an imprint of Taylor & Francis, an informa company.
Expanded and revised, this unique book provides concise descriptions of the many causes of epilepsy, for use in clinical practice.
Accompanying CD-ROM contains ... "additional images, movies, and animated sequences." -- p. [4] of cover.
Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as active participants in intercellular communication and information processing in the central nervous system, in part due to their lack of electrical excitability. The follow up chapters review the “nuts and bolts” of ast- cytic physiology; astrocytes possess a diverse assortment of ion channels, neu- transmitter receptors, and transport mechanisms that enable the astrocytes to respond to many of the same signals that act on neurons. Since astrocytes can detect chemical transmitters that are released from neurons and can release their own extracellular signals there is an increasing awareness that they play physiological roles in regulating neuronal activity and synaptic transmission. In addition to these physiological roles, it is becoming increasingly recognized that astrocytes play critical roles during pathophysiological states of the nervous system; these states include gliomas, Alexander disease, and epilepsy to mention a few.
For decades, the conventional wisdom of neuroscience held that the hardware of the brain is fixed - that we are stuck with what we were born with. But recent pioneering experiments in neuroplasticity reveal that the brain is capable not only of altering its structure but also of generating new neurons, even into old age. The brain can adapt, heal, renew itself after trauma and compensate for disability. In this groundbreaking book, highly respected science writer Sharon Begley documents how this fundamental paradigm shift is transforming both our understanding of the human mind and our approach to deep-seated emotional, cognitive and behavioural problems. These breakthroughs show that it is possible to reset our happiness meter, regain the use of limbs disabled by stroke, train the mind to break cycles of depression and OCD and reverse age-related changes in the brain.
This volume brings together authors working on a wide range of topics to provide an up to date account of the underlying mechanisms and functions of neurogenesis and synaptogenesis in the adult brain. With an increasing understanding of the role of neurogenesis and synaptogenesis it is possible to envisage improvements or novel treatments for a number of diseases and the possibility of harnessing these phenomena to reduce the impact of ageing and to provide mechanisms to repair the brain.