Download Free Associative Functions Book in PDF and EPUB Free Download. You can read online Associative Functions and write the review.

The functional equation of associativity is the topic of Abel's first contribution to Crelle's Journal. Seventy years later, it was featured as the second part of Hilbert's Fifth Problem, and it was solved under successively weaker hypotheses by Brouwer (1909), Cartan (1930) and Aczel (1949). In 1958, B Schweizer and A Sklar showed that the ?triangular norms? introduced by Menger in his definition of a probabilistic metric space should be associative; and in their book Probabilistic Metric Spaces, they presented the basic properties of such triangular norms and the closely related copulas. Since then, the study of these two classes of functions has been evolving at an ever-increasing pace and the results have been applied in fields such as statistics, information theory, fuzzy set theory, multi-valued and quantum logic, hydrology, and economics, in particular, risk analysis.This book presents the foundations of the subject of associative functions on real intervals. It brings together results that have been widely scattered in the literature and adds much new material. In the process, virtually all the standard techniques for solving functional equations in one and several variables come into play. Thus, the book can serve as an advanced undergraduate or graduate text on functional equations.
These three volumes (CCIS 442, 443, 444) constitute the proceedings of the 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2014, held in Montpellier, France, July 15-19, 2014. The 180 revised full papers presented together with five invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on uncertainty and imprecision on the web of data; decision support and uncertainty management in agri-environment; fuzzy implications; clustering; fuzzy measures and integrals; non-classical logics; data analysis; real-world applications; aggregation; probabilistic networks; recommendation systems and social networks; fuzzy systems; fuzzy logic in boolean framework; management of uncertainty in social networks; from different to same, from imitation to analogy; soft computing and sensory analysis; database systems; fuzzy set theory; measurement and sensory information; aggregation; formal methods for vagueness and uncertainty in a many-valued realm; graduality; preferences; uncertainty management in machine learning; philosophy and history of soft computing; soft computing and sensory analysis; similarity analysis; fuzzy logic, formal concept analysis and rough set; intelligent databases and information systems; theory of evidence; aggregation functions; big data - the role of fuzzy methods; imprecise probabilities: from foundations to applications; multinomial logistic regression on Markov chains for crop rotation modelling; intelligent measurement and control for nonlinear systems.
This volume collects the extended abstracts of 45 contributions of participants to the Seventh International Summer School on Aggregation Operators (AGOP 2013), held at Pamplona in July, 16-20, 2013. These contributions cover a very broad range, from the purely theoretical ones to those with a more applied focus. Moreover, the summaries of the plenary talks and tutorials given at the same workshop are included. Together they provide a good overview of recent trends in research in aggregation functions which can be of interest to both researchers in Physics or Mathematics working on the theoretical basis of aggregation functions, and to engineers who require them for applications.
This book studies representable functors among well-known varieties of algebras. All such functors from associative rings over a fixed ring R to each of the categories of abelian groups, associative rings, Lie rings, and to several others are determined. Results are also obtained on representable functors on varieties of groups, semigroups, commutative rings, and Lie algebras. The book includes a "Symbol index", which serves as a glossary of symbols used and a list of the pages where the topics so symbolized are treated, and a "Word and phrase index". The authors have strived -- and succeeded -- in creating a volume that is very user-friendly.
Integrating associative processing concepts with massively parallel SIMD technology, this volume explores a model for accessing data by content rather than abstract address mapping.
The functional equation of associativity is the topic of Abel's first contribution to Crelle's Journal. Seventy years later, it was featured as the second part of Hilbert's Fifth Problem, and it was solved under successively weaker hypotheses by Brouwer (1909), Cartan (1930) and Aczel (1949). In 1958, B Schweizer and A Sklar showed that the “triangular norms” introduced by Menger in his definition of a probabilistic metric space should be associative; and in their book Probabilistic Metric Spaces, they presented the basic properties of such triangular norms and the closely related copulas. Since then, the study of these two classes of functions has been evolving at an ever-increasing pace and the results have been applied in fields such as statistics, information theory, fuzzy set theory, multi-valued and quantum logic, hydrology, and economics, in particular, risk analysis.This book presents the foundations of the subject of associative functions on real intervals. It brings together results that have been widely scattered in the literature and adds much new material. In the process, virtually all the standard techniques for solving functional equations in one and several variables come into play. Thus, the book can serve as an advanced undergraduate or graduate text on functional equations.
This volume provides a large-scale, in-depth analysis of locative structures in Nigerian Pidgin and Ghanaian Pidgin English and compares those structures to locatives in their lexifier, substrate, and adstrate languages. The work draws on new research methods for investigating substrate and adstrate influence in semantics and creole genesis.
The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.
The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, Västerås, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and its applications. The conference has been organized along the following tracks: 1. Stochastic processes and modern statistical methods in theory and practice, 2. Engineering Mathematics, 3. Algebraic Structures and applications. This book highlights the latest advances in algebraic structures and applications focused on mathematical notions, methods, structures, concepts, problems, algorithms, and computational methods for the natural sciences, engineering, and modern technology. In particular, the book features mathematical methods and models from non-commutative and non-associative algebras and rings associated to generalizations of differential calculus, quantum deformations of algebras, Lie algebras, Lie superalgebras, color Lie algebras, Hom-algebras and their n-ary generalizations, semi-groups and group algebras, non-commutative and non-associative algebras and computational algebra interplay with q-special functions and q-analysis, topology, dynamical systems, representation theory, operator theory and functional analysis, applications of algebraic structures in coding theory, information analysis, geometry and probability theory. The book gathers selected, high-quality contributed chapters from several large research communities working on modern algebraic structures and their applications. The chapters cover both theory and applications, and are illustrated with a wealth of ideas, theorems, notions, proofs, examples, open problems, and results on the interplay of algebraic structures with other parts of Mathematics. The applications help readers grasp the material, and encourage them to develop new mathematical methods and concepts in their future research. Presenting new methods and results, reviews of cutting-edge research, open problems, and directions for future research, will serve as a source of inspiration for a broad range of researchers and students.