Download Free Asset Pricing In Discrete Time Book in PDF and EPUB Free Download. You can read online Asset Pricing In Discrete Time and write the review.

Relying on the existence, in a complete market, of a pricing kernel, this book covers the pricing of assets, derivatives, and bonds in a discrete time, complete markets framework. It is primarily aimed at advanced Masters and PhD students in finance.-- Covers asset pricing in a single period model, deriving a simple complete market pricing model and using Stein's lemma to derive a version of the Capital Asset Pricing Model.-- Looks more deeply into some of the utility determinants of the pricing kernel, investigating in particular the effect of non-marketable background risks on the shape of the pricing kernel.-- Derives the prices of European-style contingent claims, in particular call options, in a one-period model; derives the Black-Scholes model assuming a lognormal distribution for the asset and a pricing kernel with constant elasticity, and emphasizes the idea of a risk-neutral valuation relationship between the price of a contingent claim on an asset and the underlying asset price.-- Extends the analysis to contingent claims on assets with non-lognormal distributions and considers the pricing of claims when risk-neutral valuation relationships do not exist.-- Expands the treatment of asset pricing to a multi-period economy, deriving prices in a rational expectations equilibrium.-- Uses the rational expectations framework to analyse the pricing of forward and futures contracts on assets and derivatives.-- Analyses the pricing of bonds given stochastic interest rates, and then uses this methodology to model the drift of forward rates, and as a special case the drift of the forward London Interbank Offer Rate in the LIBOR Market Model.
The book presents models for the pricing of financial assets such as stocks, bonds, and options. The models are formulated and analyzed using concepts and techniques from mathematics and probability theory. It presents important classic models and some recent 'state-of-the-art' models that outperform the classics.
A comprehensive overview of the theory of stochastic processes and its connections to asset pricing, accompanied by some concrete applications. This book presents a self-contained, comprehensive, and yet concise and condensed overview of the theory and methods of probability, integration, stochastic processes, optimal control, and their connections to the principles of asset pricing. The book is broader in scope than other introductory-level graduate texts on the subject, requires fewer prerequisites, and covers the relevant material at greater depth, mainly without rigorous technical proofs. The book brings to an introductory level certain concepts and topics that are usually found in advanced research monographs on stochastic processes and asset pricing, and it attempts to establish greater clarity on the connections between these two fields. The book begins with measure-theoretic probability and integration, and then develops the classical tools of stochastic calculus, including stochastic calculus with jumps and Lévy processes. For asset pricing, the book begins with a brief overview of risk preferences and general equilibrium in incomplete finite endowment economies, followed by the classical asset pricing setup in continuous time. The goal is to present a coherent single overview. For example, the text introduces discrete-time martingales as a consequence of market equilibrium considerations and connects them to the stochastic discount factors before offering a general definition. It covers concrete option pricing models (including stochastic volatility, exchange options, and the exercise of American options), Merton's investment–consumption problem, and several other applications. The book includes more than 450 exercises (with detailed hints). Appendixes cover analysis and topology and computer code related to the practical applications discussed in the text.
Winner of the prestigious Paul A. Samuelson Award for scholarly writing on lifelong financial security, John Cochrane's Asset Pricing now appears in a revised edition that unifies and brings the science of asset pricing up to date for advanced students and professionals. Cochrane traces the pricing of all assets back to a single idea—price equals expected discounted payoff—that captures the macro-economic risks underlying each security's value. By using a single, stochastic discount factor rather than a separate set of tricks for each asset class, Cochrane builds a unified account of modern asset pricing. He presents applications to stocks, bonds, and options. Each model—consumption based, CAPM, multifactor, term structure, and option pricing—is derived as a different specification of the discounted factor. The discount factor framework also leads to a state-space geometry for mean-variance frontiers and asset pricing models. It puts payoffs in different states of nature on the axes rather than mean and variance of return, leading to a new and conveniently linear geometrical representation of asset pricing ideas. Cochrane approaches empirical work with the Generalized Method of Moments, which studies sample average prices and discounted payoffs to determine whether price does equal expected discounted payoff. He translates between the discount factor, GMM, and state-space language and the beta, mean-variance, and regression language common in empirical work and earlier theory. The book also includes a review of recent empirical work on return predictability, value and other puzzles in the cross section, and equity premium puzzles and their resolution. Written to be a summary for academics and professionals as well as a textbook, this book condenses and advances recent scholarship in financial economics.
This book provides a broad introduction to modern asset pricing theory. The theory is self-contained and unified in presentation. Both the no-arbitrage and the general equilibrium approaches of asset pricing theory are treated coherently within the general equilibrium framework. It fills a gap in the body of literature on asset pricing for being both advanced and comprehensive. The absence of arbitrage opportunities represents a necessary condition for equilibrium in the financial markets. However, the absence of arbitrage is not a sufficient condition for establishing equilibrium. These interrelationships are overlooked by the proponents of the no-arbitrage approach to asset pricing.This book also tackles recent advancement on inversion problems raised in asset pricing theory, which include the information role of financial options and the information content of term structure of interest rates and interest rates contingent claims.The inclusion of the proofs and derivations to enhance the transparency of the underlying arguments and conditions for the validity of the economic theory made it an ideal advanced textbook or reference book for graduate students specializing in financial economics and quantitative finance. The detailed explanations will capture the interest of the curious reader, and it is complete enough to provide the necessary background material needed to delve deeper into the subject and explore the research literature.Postgraduate students in economics with a good grasp of calculus, linear algebra, and probability and statistics will find themselves ready to tackle topics covered in this book. They will certainly benefit from the mathematical coverage in stochastic processes and stochastic differential equation with applications in finance. Postgraduate students in financial mathematics and financial engineering will also benefit, not only from the mathematical tools introduced in this book, but also from the economic ideas underpinning the economic modeling of financial markets.Both these groups of postgraduate students will learn the economic issues involved in financial modeling. The book can be used as an advanced text for Masters and PhD students in all subjects of financial economics, financial mathematics, mathematical finance, and financial engineering. It is also an ideal reference for practitioners and researchers in the subjects.
This book covers the classical results on single-period, discrete-time, and continuous-time models of portfolio choice and asset pricing. It also treats asymmetric information, production models, various proposed explanations for the equity premium puzzle, and topics important for behavioral finance.
This is a thoroughly updated edition of Dynamic Asset Pricing Theory, the standard text for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimality, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis, so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. Readers will be particularly intrigued by this latest edition's most significant new feature: a chapter on corporate securities that offers alternative approaches to the valuation of corporate debt. Also, while much of the continuous-time portion of the theory is based on Brownian motion, this third edition introduces jumps--for example, those associated with Poisson arrivals--in order to accommodate surprise events such as bond defaults. Applications include term-structure models, derivative valuation, and hedging methods. Numerical methods covered include Monte Carlo simulation and finite-difference solutions for partial differential equations. Each chapter provides extensive problem exercises and notes to the literature. A system of appendixes reviews the necessary mathematical concepts. And references have been updated throughout. With this new edition, Dynamic Asset Pricing Theory remains at the head of the field.
Theory of Asset Pricing unifies the central tenets and techniques of asset valuation into a single, comprehensive resource that is ideal for the first PhD course in asset pricing. By striking a balance between fundamental theories and cutting-edge research, Pennacchi offers the reader a well-rounded introduction to modern asset pricing theory that does not require a high level of mathematical complexity.
Asset Pricing Theory is an advanced textbook for doctoral students and researchers that offers a modern introduction to the theoretical and methodological foundations of competitive asset pricing. Costis Skiadas develops in depth the fundamentals of arbitrage pricing, mean-variance analysis, equilibrium pricing, and optimal consumption/portfolio choice in discrete settings, but with emphasis on geometric and martingale methods that facilitate an effortless transition to the more advanced continuous-time theory. Among the book's many innovations are its use of recursive utility as the benchmark representation of dynamic preferences, and an associated theory of equilibrium pricing and optimal portfolio choice that goes beyond the existing literature. Asset Pricing Theory is complete with extensive exercises at the end of every chapter and comprehensive mathematical appendixes, making this book a self-contained resource for graduate students and academic researchers, as well as mathematically sophisticated practitioners seeking a deeper understanding of concepts and methods on which practical models are built. Covers in depth the modern theoretical foundations of competitive asset pricing and consumption/portfolio choice Uses recursive utility as the benchmark preference representation in dynamic settings Sets the foundations for advanced modeling using geometric arguments and martingale methodology Features self-contained mathematical appendixes Includes extensive end-of-chapter exercises
This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study of a simple one-period model, which also serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of financial risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. This fourth, newly revised edition contains more than one hundred exercises. It also includes material on risk measures and the related issue of model uncertainty, in particular a chapter on dynamic risk measures and sections on robust utility maximization and on efficient hedging with convex risk measures. Contents: Part I: Mathematical finance in one period Arbitrage theory Preferences Optimality and equilibrium Monetary measures of risk Part II: Dynamic hedging Dynamic arbitrage theory American contingent claims Superhedging Efficient hedging Hedging under constraints Minimizing the hedging error Dynamic risk measures