Download Free Assessment And Simulation Tools For Sustainable Energy Systems Book in PDF and EPUB Free Download. You can read online Assessment And Simulation Tools For Sustainable Energy Systems and write the review.

In recent years, the concept of energy has been revised and a new model based on the principle of sustainability has become more and more pervasive. The appraisal of energy technologies and projects is complex and uncertain as the related decision making has to encompass environmental, technical, economic and social factors and information sources. The scientific procedure of assessment has a vital role as it can supply the right tools to evaluate the actual situation and make realistic forecasts of the effects and outcomes of any actions undertaken. Assessment and Simulation Tools for Sustainable Energy Systems offers reviews of the main assessment and simulation methods used for effective energy assessment. Divided across three sections, Assessment and Simulation Tools for Sustainable Energy Systems develops the reader’s ability to select suitable tools to support decision making and implementation of sustainable energy projects. The first is dedicated to the analysis of theoretical foundations and applications of multi-criteria decision making. This is followed by chapters concentrating on the theory and practice of fuzzy inference, neural nets and algorithms genetics. Finally, simulation methods such as Monte Carlo analysis, mathematical programming and others are detailed. This comprehensive illustration of these tools and their application makes Assessment and Simulation Tools for Sustainable Energy Systems a key guide for researchers, scientists, managers, politicians and industry professionals developing the field of sustainable energy systems. It may also prompt further advancements in soft computing and simulation issues for students and researchers.
This book provides readers with an overview of recent theories and methods for studying complex mechanical systems used in energy production, such as wind turbines, but not limited to them. The emphasis is put on strategies for increasing energy efficiency, and on recent industrial applications. Topics cover dynamics and vibration, vibroacoustics, engineering design, modelling and simulation, fault diagnostics, signal processing and prognostics. The book is based on peer-review contributions and invited talks presented at the first International Workshop on MOdelling and Simulation of COmplex Systems for Sustainable Energy Efficiency, MOSCOSSEE 2021, held online on February 25-26, 2021, and organized by the LAboratory of Mechanics, Modelling and Production (LA2MP) from University of Sfax, Tunisia and the Department of Mechanical and Aeronautical engineering, Centre of Asset Integrity Management (C-AIM) from University of Pretoria, South Africa. By offering authoritative information on innovative methods and tools for application in renewable energy production, it provides a valuable resource to both academics and professionals, and a bridge to facilitate communication between the two groups.
This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.
Sustainable Assessment Method for Energy Systems provides the reader with a new method for energy system evaluation. It is widely recognized that future energy strategies will have to deal with energy as a complex issue that incorporates environmental, economic, social, cultural, educational, and material resource attributes. Sustainable Assessment Method for Energy Systems offers a new methodology based on multi-criteria indicators for the evaluation of energy as a system.
Energy systems worldwide are undergoing major transformation as a consequence of the transition towards the widespread use of clean and sustainable energy sources. Basically, this involves massive changes in technical and organizational levels together with tremendous technological upgrades in different sectors ranging from energy generation and transmission systems down to distribution systems. These actions generate huge science and engineering challenges and demands for expert knowledge in the field to create solutions for a sustainable energy system that is economically, environmentally, and socially viable while meeting high security requirements. This book covers these promising and dynamic areas of research and development, and presents contributions in sustainable energy systems planning, integration, and management. Moreover, the book elaborates on a variety of topics, ranging from design and planning of small- to large-scale energy systems to the operation and control of energy networks in different sectors, namely electricity, heat, ‎and transport.
This book presents various multi-criteria analysis methods for sustainability-oriented analysis and decision-making for energy systems, under various different conditions and scenarios. It presents methodologies to answer the questions relating to which of the options are the most sustainable among the alternatives, and how multi-criteria decision analysis methods can be used to select the most sustainable energy systems. A systematic innovative methodological framework is presented, which enables the most appropriate energy system to be selected under different conditions including: Scientific decision support tools for sustainable energy system selection; Fuzzy, grey, and rough sets based multi-criteria decision analysis; Decision-making models under uncertainties; and The combination of life cycle thinking and multi-criteria decision analysis This book is of interest to researchers, engineers, decision makers, and postgraduate students within the field of energy systems, sustainability, and multi-criteria decision analysis.
This book presents various methods for sustainability assessment of energy systems, under various different conditions and scenarios. It answers the questions of how to measure the sustainability of energy systems by adopting appropriate metrics and methods. This book provides readers with a comprehensive view of the frontiers of sustainability assessment methods for energy system analysis. It presents various methodologies, allowing readers to understand: the complete metrics for sustainability assessment; life cycle thinking for sustainability assessment of energy systems; and the advanced sustainability assessment methods for energy systems. This book is of interest to researchers, engineers, decision makers, and postgraduate students within the field of energy systems, sustainability, and decision analysis.
Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods Includes new circuits and systems, helping researchers solve many nonlinear problems
This book deals with the application of life cycle assessment (LCA) methodology to sustainable energy systems and technologies. It reviews the state-of-the-art of the Italian experiences on the LCA applied to energy, and the most recent results from research in this field, with a particular focus on renewables, bio-energy and sustainable solutions. The contributors describe in detail the applications of LCA to various energy system topics, including: • electricity production, smart energy grids and energy storage systems;• renewable energy production from biomass;• production of biodiesel from microalgae;• environmental impacts of biomass power plants; and• geothermal energy production. These topics are supported by critical reviews and case studies, with discussions of Italian examples, demonstrating LCA’s application to various energy systems. A particular focus is placed on bio-energies and bio-energy systems, demonstrating how LCA can be used for optimal bio-energy production. This book offers an opportunity for researchers and advanced practitioners in the field of LCA to learn more about the application of LCA methodology to energy systems and technologies. It will also be of interest to students, as it enables them to understand the environmental impacts of energy systems and sustainable energy technologies, through the analysis of their life cycles.
The purpose of the China Energy Technology Program (CETP) has been to take a holistic view of electricity generation in China with special emphasis on the economic and environmental impact of technology. The program is a collaborative effort involving industry, as leader and manager of the program; researchers from academia and national research institutes; and the stakeholders--users or planners of the electricity market. A power plant, no matter of what kind, is not a solitary unit, which may be considered independently from its environment. Modem society has been built on easy access to power; it is now asking for environmentally clean power. Clean power is the pathway that will lead to sustainability, an extension of the concept of an environmentally clean future. Progress toward a sustainable technical solution must include an evaluation of the environmental, economic, and societal impact of electrical power generation. To achieve the goals of the CETP program, we wanted to go beyond what had been done in similar programs in the past. Its organizers wanted the program not only to evaluate the overall impact of electricity generation, but also do it in such a way that program results could be applied and adapted to different circumstances, including countries other than China. For this purpose we have developed a methodology and presented it on a DVD disc, which the reader will find inside the back cover of this book. The methodology is conceived to allow insights into the function of the program on various levels.