Download Free Assessing The Impacts Of Climate Change On River Basin Management Book in PDF and EPUB Free Download. You can read online Assessing The Impacts Of Climate Change On River Basin Management and write the review.

A framework is developed for the assessment of climate change impacts on water resources systems. The applied techniques include: quantifying global climate model (GCM) skill over a range of time scales; developing future climate scenarios based on GCM data that are found to skillfully represent the observed climate over an historical baseline period; and using the climate scenarios together with hydrologic and water resources models to make assessments of the potential impacts and implications of climate change on water resources systems. A statistical analysis of GCM skill in East Africa shows that temperature is well represented in the GCMs at monthly to annual time scales. Precipitation is found to be much less reliable in the models and shows skill in fewer seasons and nodes than temperature. Eight climate scenarios, stemming from three global climate models and two atmospheric emissions scenarios, project temperature increases between 2 and 5 ° Celsius by the year 2080. Precipitation projections vary widely across models as well as regionally. The scenarios project changes in precipitation from -38% to +42%.
Climate change not only involves rising temperatures but it can also alter the hydro-meteorological parameters of a region and the corresponding changes emerging in the various biotic or abiotic environmental features. One of the results of climate change has been the impact on the sediment yield and its transport. These changes have implications for various other environmental components, particularly soils, water bodies, water quality, land productivity, sedimentation processes, glacier dynamics, and risk management strategies to name a few. This volume provides an overview of the fundamental processes and impacts of climate change on river basin management and examines issues related to soil erosion, sedimentation, and contaminants, as well as rainfall-runoff modeling and flood mitigation strategies. It also includes coverage of climate change fundamentals as well as chapters on related global treaties and policies.
Climate change not only involves rising temperatures but it can also alter the hydro-meteorological parameters of a region and the corresponding changes emerging in the various biotic or abiotic environmental features. One of the results of climate change has been the impact on the sediment yield and its transport. These changes have implications for various other environmental components, particularly soils, water bodies, water quality, land productivity, sedimentation processes, glacier dynamics, and risk management strategies to name a few. This volume provides an examination of the technological approaches to water management, and the practical applications for remote sensing, satellite image processing, and advanced statistical methods, all which can be utilized to predict, monitor, and manage the effects of climate change on river basins.
Climate change not only involves rising temperatures but it can also alter the hydro-meteorological parameters of a region and the corresponding changes emerging in the various biotic or abiotic environmental features. One of the results of climate change has been the impact on the sediment yield and its transport. These changes have implications for various other environmental components, particularly soils, water bodies, water quality, land productivity, sedimentation processes, glacier dynamics, and risk management strategies to name a few. This volume presents a diverse collection of case studies from researchers across the globe examining the impacts of climate change on river basin management in various geographical, hydrological, and socioeconomic contexts. The case studies yield important insights that can inform strategies to build resilience and adapt river basins to a changing climate.
The 2020 edition of the WWDR, titled Water and Climate Change illustrates the critical linkages between water and climate change in the context of the broader sustainable development agenda. Supported by examples from across the world, it describes both the challenges and opportunities created by climate change, and provides potential responses – in terms of adaptation, mitigation and improved resilience – that can be undertaken by enhancing water resources management, attenuating water-related risks, and improving access to water supply and sanitation services for all in a sustainable manner. It addresses the interrelations between water, people, environment and economics in a changing climate, demonstrating how climate change can be a positive catalyst for improved water management, governance and financing to achieve a sustainable and prosperous world for all. The report provides a fact-based, water-focused contribution to the knowledge base on climate change. It is complementary to existing scientific assessments and designed to support international political frameworks, with the goals of helping the water community tackle the challenges of climate change, and informing the climate change community about the opportunities that improved water management offers in terms of adaptation and mitigation.
This text is the first international and comprehensive discussion of the impacts of climatic fluctuations and climate change on water resources management. The book presents an overview of the impacts of climatic change/fluctuations on a wide variety of water resources sectors including river runoff, water quality, water temperature, water use and demand, reservoir management and water resource planning and management. The book is unique in that it then presents a series of case studies to both demonstrate the application of climate change impact assessment methodologies and to provide insights to catchment, river basin, and national scale impacts of climate change/fluctuations on the water resources of Africa, Europe, and North America. Audience: Researchers, scholars and students of hydrology and water management who are concerned with the issues of climate change as well as the climate change impact assessment community.
This open access book surveys the frontier of scientific river research and provides examples to guide management towards a sustainable future of riverine ecosystems. Principal structures and functions of the biogeosphere of rivers are explained; key threats are identified, and effective solutions for restoration and mitigation are provided. Rivers are among the most threatened ecosystems of the world. They increasingly suffer from pollution, water abstraction, river channelisation and damming. Fundamental knowledge of ecosystem structure and function is necessary to understand how human acitivities interfere with natural processes and which interventions are feasible to rectify this. Modern water legislation strives for sustainable water resource management and protection of important habitats and species. However, decision makers would benefit from more profound understanding of ecosystem degradation processes and of innovative methodologies and tools for efficient mitigation and restoration. The book provides best-practice examples of sustainable river management from on-site studies, European-wide analyses and case studies from other parts of the world. This book will be of interest to researchers in the field of aquatic ecology, river system functioning, conservation and restoration, to postgraduate students, to institutions involved in water management, and to water related industries.
With the rapid increase of world population, the global water shortage is set to be the major crises of the twenty-first century; that is, population dynamics (growth, age distribution, urbanization and migration) create pressures on freshwater resources due to the increased water demands and pollution. Moreover, water resources management faces a new uncertainty- i.e. the potential for longer-term and more persistent climate change nowadays, which, in coming years, may significantly affect the availability of supply and patterns of water demand. This book mainly focuses on the impact of climate change and human activities on water quality and water resources in Asia Countries. It begins by describing the characteristics of water related disasters in the world. Then, the book analyzes the changes of floods and associated socio-economic damages for whole China over the last century, and assesses water quality and pollution source for the Yangtze River Basin, suggesting water-related disasters would become more intense, longer lasting, and/or more frequent in a future warmer climate. Then, after investigating spatiotemporal trends and causes of water quality and water quality incidents (Chapter 4) and precipitation extreme events (Chapter 5) in Japan, subsequent two chapters mainly evaluate the climate and human impacts on precipitation variations, water quality and water resources in the Hokkaido area. The final chapter comprehensively analyzes climate change impacts on water resources in the Aral Sea Basin, and then estimate the water requirements and water deficits for irrigation, future agricultural yields of seven major crops, and land and water productivity in four provinces of Turkmenistan considering climate change, population growth, and three socio-economic development scenarios. All results obtained from this book may provide a means to reduce water quality incidents and mitigate future negative impacts by adapting water management. Furthermore, the improved methods for water quality modeling in data scarce regions are transferable to other study areas and applicable in future research.
The shortage of fresh water is likely to be one of the most pressing issues of the twenty-first century. A UNESCO report predicts that as many as 7 billion people will face shortages of drinking water by 2050. Here, David Lewis Feldman examines river-basin management cases around the world to show how fresh water can be managed to sustain economic development while protecting the environment. He argues that policy makers can employ adaptive management to avoid making decisions that could harm the environment, to recognize and correct mistakes, and to monitor environmental and socioeconomic changes caused by previous policies. To demonstrate how adaptive management can work, Feldman applies it to the Delaware, Susquehanna, Apalachicola-Chattahoochee-Flint, Sacramento--San Joaquin, and Columbia river basins. He assesses the impacts of runoff pollution and climate change, the environmental-justice aspects of water management, and the prospects for sustainable fresh water management. Case studies of the Murray-Darling basin in Australia, the Rhine and Danube in Europe, the Zambezi in Africa, and the Rio de la Plata in South America reveal the impediments to, and opportunities for, adaptive management on a global scale. Feldman's comprehensive investigation and practical analysis bring new insight into the global and political challenges of preserving and managing one of the planet's most important resources.
Advanced Tools and Models to Improve River Basin Management in Europe in the Context of Climate Change - AquaTerra has developed from an integrated project of the 6th EU RTD Framework Programme that aims to provide the scientific basis for an improved river basin management through a better understanding of the river-sediment-soil-groundwater system as a whole, by integrating both natural and socio-economics aspects at different temporal and spatial scales. This book aims: To provide better understanding of the river-sediment-soil-groundwater system at various temporal and spatial scales To relate expected climate alterations to changes in deposition, mobility and distribution of pollutants in European river basins To provide the scientific basis for improved river basin management To introduce novel tools for water and soil quality monitoring To show the necessity of integrated modelling frameworks for impact evaluation of pollution as well as climate and land-use changes for definition of long-term management schemes The work illustrates the dynamic behavior of the pathway of pollutants in soils, groundwater, surface water and sediments. It highlights the fundamental importance of integrating knowledge from several combined disciplines on various environmental compartments in order to understand the large number of processes that govern pollutant input, transport and turnover. Results shows that a significant step forward has been made in the development new analytical methods and of process-based numerical models that are capable of making predictions of likely trends and environmental changes to be expected in the near or distant future at the basin-scale. These models can be used e.g. to generate hydrologic scenarios based on climate models and to simulate pollutant distribution and turnover rates from decades to millennia.