Download Free Assessing Rare Variation In Complex Traits Book in PDF and EPUB Free Download. You can read online Assessing Rare Variation In Complex Traits and write the review.

This book is unique in covering a wide range of design and analysis issues in genetic studies of rare variants, taking advantage of collaboration of the editors with many experts in the field through large-scale international consortia including the UK10K Project, GO-T2D and T2D-GENES. Chapters provide details of state-of-the-art methodology for rare variant detection and calling, imputation and analysis in samples of unrelated individuals and families. The book also covers analytical issues associated with the study of rare variants, such as the impact of fine-scale population structure, and with combining information on rare variants across studies in a meta-analysis framework. Genetic association studies have in the last few years substantially enhanced our understanding of factors underlying traits of high medical importance, such as body mass index, lipid levels, blood pressure and many others. There is growing empirical evidence that low-frequency and rare variants play an important role in complex human phenotypes. This book covers multiple aspects of study design, analysis and interpretation for complex trait studies focusing on rare sequence variation. In many areas of genomic research, including complex trait association studies, technology is in danger of outstripping our capacity to analyse and interpret the vast amounts of data generated. The field of statistical genetics in the whole-genome sequencing era is still in its infancy, but powerful methods to analyse the aggregation of low-frequency and rare variants are now starting to emerge. The chapter Functional Annotation of Rare Genetic Variants is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This volume details fast-moving research while providing in-depth descriptions of methods and analytical approaches that are helping to understand the genome and how it is related to complex diseases. Chapters guide the reader through common and rare variation, gene-gene and gene-environment interactions and state-of-the-art approaches for the synthesis of genome-wide and gene expression data. Novel approaches for associations in the HLA region, family-based designs, Mendelian Randomization and Copy Number Variation are also presented. The volume concludes with the challenges researchers face while moving from identifying variants to their functional role and potential drug targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, a thorough presentation of methods and approaches and tips on troubleshooting and avoiding known pitfalls.
Biosocial Surveys analyzes the latest research on the increasing number of multipurpose household surveys that collect biological data along with the more familiar interviewerâ€"respondent information. This book serves as a follow-up to the 2003 volume, Cells and Surveys: Should Biological Measures Be Included in Social Science Research? and asks these questions: What have the social sciences, especially demography, learned from those efforts and the greater interdisciplinary communication that has resulted from them? Which biological or genetic information has proven most useful to researchers? How can better models be developed to help integrate biological and social science information in ways that can broaden scientific understanding? This volume contains a collection of 17 papers by distinguished experts in demography, biology, economics, epidemiology, and survey methodology. It is an invaluable sourcebook for social and behavioral science researchers who are working with biosocial data.
This book is an edited collection of recently published papers on the sources of average test score gaps when analysed through the lenses of race and ethnicity, socio-economic status, and biogeographic ancestries such as European, African, and East Asian ancestry. It brings together exciting recent findings that rely on powerful DNA-based methods developed in the last few decades. The book also considers the public policy question as to whether, and how, these findings should be disseminated to the general public audience.
Advances in high-throughput biological methods have led to the publication of a large number of genome-wide studies in human and animal models. In this context, recent tools from bioinformatics and computational biology have been fundamental for the analysis of these genomic studies. The book Bioinformatics and Human Genomics Research provides updated and comprehensive information about multiple approaches of the application of bioinformatic tools to research in human genomics. It covers strategies analysis of genome-wide association studies, genome-wide expression studies and genome-wide DNA methylation, among other topics. It provides interesting strategies for data mining in human genomics, network analysis, prediction of binding sites for miRNAs and transcription factors, among other themes. Experts from all around the world in bioinformatics and human genomics have contributed chapters in this book. Readers will find this book as quite useful for their in silico explorations, which would contribute to a better and deeper understanding of multiple biological processes and of pathophysiology of many human diseases.
This is the latest volume in the IOC Encyclopaedia of Sports Medicine series, summarizing the evidence from all relevant sources on the genetic and molecular basis of sports and other human physical performance. The initial chapters address the basic science of genomics and genetics and the regulation of gene expression. Additional chapters provide authoritative information on the genetics of complex performance phenotypes, the contributions of small animal research, family and twin studies, and ethnic comparisons. A final section addresses the issue of the contribution of specific genes and molecular markers as related to endurance, strength and power, and responsiveness to specific conditioning programs. This latest volume in the Encyclopaedia of Sports Medicine Series from the Medical Commission of the International Olympic Committee is a must for sports and exercise scientists who require a thorough guide to the most cutting edge science in this expanding field.
Advances in genetics and genomics are transforming medical practice, resulting in a dramatic growth of genetic testing in the health care system. The rapid development of new technologies, however, has also brought challenges, including the need for rigorous evaluation of the validity and utility of genetic tests, questions regarding the best ways to incorporate them into medical practice, and how to weigh their cost against potential short- and long-term benefits. As the availability of genetic tests increases so do concerns about the achievement of meaningful improvements in clinical outcomes, costs of testing, and the potential for accentuating medical care inequality. Given the rapid pace in the development of genetic tests and new testing technologies, An Evidence Framework for Genetic Testing seeks to advance the development of an adequate evidence base for genetic tests to improve patient care and treatment. Additionally, this report recommends a framework for decision-making regarding the use of genetic tests in clinical care.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Rosenberg’s Molecular and Genetic Basis of Neurologic and Psychiatric Disease, Fifth Edition provides a comprehensive introduction and reference to the foundations and key practical aspects relevant to the majority of neurologic and psychiatric disease. A favorite of over three generations of students, clinicians and scholars, this new edition retains and expands the informative, concise and critical tone of the first edition. This is an essential reference for general medical practitioners, neurologists, psychiatrists, geneticists, and related professionals, and for the neuroscience and neurology research community. The content covers all aspects essential to the practice of neurogenetics to inform clinical diagnosis, treatment and genetic counseling. Every chapter has been thoroughly revised or newly commissioned to reflect the latest scientific and medical advances by an international team of leading scientists and clinicians. The contents have been expanded to include disorders for which a genetic basis has been recently identified, together with abundant original illustrations that convey and clarify the key points of the text in an attractive, didactic format. Previous editions have established this book as the leading tutorial reference on neurogenetics. Researchers will find great value in the coverage of genomics, animal models and diagnostic methods along with a better understanding of the clinical implications. Clinicians will rely on the coverage of the basic science of neurogenetics and the methods for evaluating patients with biochemical abnormalities or gene mutations, including links to genetic testing for specific diseases. Comprehensive coverage of the neurogenetic foundation of neurological and psychiatric disease Detailed introduction to both clinical and basic research implications of molecular and genetic understanding of the brain Detailed coverage of genomics, animal models and diagnostic methods with new coverage of evaluating patients with biochemical abnormalities or gene mutations