Download Free Assessing Biodiversity In The Phylogenomic Era Book in PDF and EPUB Free Download. You can read online Assessing Biodiversity In The Phylogenomic Era and write the review.

This book is about phylogenetic diversity as an approach to reduce biodiversity losses in this period of mass extinction. Chapters in the first section deal with questions such as the way we value phylogenetic diversity among other criteria for biodiversity conservation; the choice of measures; the loss of phylogenetic diversity with extinction; the importance of organisms that are deeply branched in the tree of life, and the role of relict species. The second section is composed by contributions exploring methodological aspects, such as how to deal with abundance, sampling effort, or conflicting trees in analysis of phylogenetic diversity. The last section is devoted to applications, showing how phylogenetic diversity can be integrated in systematic conservation planning, in EDGE and HEDGE evaluations. This wide coverage makes the book a reference for academics, policy makers and stakeholders dealing with biodiversity conservation.
Biological Diversity provides an up to date, authoritative review of the methods of measuring and assessing biological diversity, together with their application. The book's emphasis is on quantifying the variety, abundance, and occurrence of taxa, and on providing objective and clear guidance for both scientists and managers. This is a fast-moving field and one that is the focus of intense research interest. However the rapid development of new methods, the inconsistent and sometimes confusing application of old ones, and the lack of consensus in the literature about the best approach, means that there is a real need for a current synthesis. Biological Diversity covers fundamental measurement issues such as sampling, re-examines familiar diversity metrics (including species richness, diversity statistics, and estimates of spatial and temporal turnover), discusses species abundance distributions and how best to fit them, explores species occurrence and the spatial structure of biodiversity, and investigates alternative approaches used to assess trait, phylogenetic, and genetic diversity. The final section of the book turns to a selection of contemporary challenges such as measuring microbial diversity, evaluating the impact of disturbance, assessing biodiversity in managed landscapes, measuring diversity in the imperfect fossil record, and using species density estimates in management and conservation.
“Biodiversity” refers to the variety of life. It is now agreed that there is a “biodiversity crisis”, corresponding to extinction rates of species that may be 1000 times what is thought to be “normal”. Biodiversity science has a higher profile than ever, with the new Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services involving more than 120 countries and 1000s of scientists. At the same time, the discipline is re-evaluating its foundations – including its philosophy and even core definitions. The value of biodiversity is being debated. In this context, the tree of life (“phylogeny”) is emerging as an important way to look at biodiversity, with relevance cutting across current areas of concern – from the question of resilience within ecosystems, to conservation priorities for globally threatened species – while capturing the values of biodiversity that have been hard to quantify, including resilience and maintaining options for future generations. This increased appreciation of the importance of conserving “phylogenetic diversity”, from microbial communities in the human gut to global threatened species, has inevitably resulted in an explosion of new indices, methods, and case studies. This book recognizes and responds to the timely opportunity for synthesis and sharing experiences in practical applications. The book recognizes that the challenge of finding a synthesis, and building shared concepts and a shared toolbox, requires both an appreciation of the past and a look into the future. Thus, the book is organized as a flow from history, concepts and philosophy, through to methods and tools, and followed by selected case studies. A positive vision and plan of action emerges from these chapters, that includes coping with inevitable uncertainties, effectively communicating the importance of this “evolutionary heritage” to the public and to policy-makers, and ultimately contributing to biodiversity conservation policy from local to global scales.
Leading experts on the field of biodiversity examine examples from a wide range of organism groups. Their approaches include the latest molecular and phylogenetic techniques through to the selection of indicator data and aspects of sampling. This paperback edition has been published for students on 'biodiversity' related courses.
Phylogeny is a potentially powerful tool for conserving biodiversity. This book explores how it can be used to tackle questions of great practical importance and urgency for conservation. Using case studies from many different taxa and regions of the world, the volume evaluates how useful phylogeny is in understanding the processes that have generated today's diversity and the processes that now threaten it. The urgency with which conservation decisions have to be made as well as the need for the best possible decisions make this volume of great value to researchers, practitioners and policy-makers.
All living things on earth—from individual species to entire ecosystems—have evolved through time, and evolution is the acknowledged framework of modern biology. Yet many areas of biology have moved from a focus on evolution to much narrower perspectives. Daniel R. Brooks and Deborah A. McLennan argue that it is impossible to comprehend the nature of life on earth unless evolution—the history of organisms—is restored to a central position in research. They demonstrate how the phylogenetic approach can be integrated with ecological and behavioral studies to produce a richer and more complete picture of evolution. Clearly setting out the conceptual, methodological, and empirical foundations of their research program, Brooks and McLennan show how scientists can use it to unravel the evolutionary history of virtually any characteristic of any living thing, from behaviors to ecosystems. They illustrate and test their approach with examples drawn from a wide variety of species and habitats. The Nature of Diversity provides a powerful new tool for understanding, documenting, and preserving the world's biodiversity. It is an essential book for biologists working in evolution, ecology, behavior, conservation, and systematics. The argument in The Nature of Diversity greatly expands upon and refines the arguments made in the authors' previous book Phylogeny, Ecology, and Behavior.
As everybody knows, the dynamic interactions between biotic and abiotic factors, as well as the anthropic ones, considerably affect global climate changes and consequently biology, ecology and distribution of life forms of our planet. These important natural events affect all ecosystems, causing important changes on biodiversity. Systematic and phylogenetic studies, biogeographic distribution analysis and evaluations of diversity richness are focal topics of this book written by international experts, some even considering economical effects and future perspectives on the managing and conservation plans.
The book includes collection of theoretical papers dealing with the species problem, which is among most fundamental issues in biology. The principal topics are: consideration of the species problem from the standpoint of modern non-classical science paradigm, with emphasis on its conceptual status presuming its analysis within certain conceptual framework; evolutionary emergence of the species as discrete unit of certain level of generality; epistemological consideration of the species as a particular explanatory hypotheses, with respective revised concepts of biodiversity and conservation; considerations of evolutionary and phylogenomic species concepts as candidates for the universal one; re-appraisal of the biological species concept based on the "friend-foe" recognition system; species delimitation approach using multi-locus coalescent-based method; a re-consideration of the Darwin's species concept.