Download Free Assembled 2016 Book in PDF and EPUB Free Download. You can read online Assembled 2016 and write the review.

Biomolecular self-assembly provides a green, facile, and highly effective method to synthesize various functional nanomaterials that have exhibited considerable potential in the fields of nanotechnology, materials science, biomedicine, tissue engineering, food science, energy storage, and environmental science. In this collection of articles, we presented recent advance in the synthesis, characterization, and applications of self-assembled bio-nanomaterials. In a comprehensive review article, the controlled self-assembly of biomolecules including DNA, protein, peptide, enzymes, virus, and biopolymers via internal interactions and external simulations is introduced and discussed in detail. In other research articles, the self-assembly of DNA, protein, peptide, bio-drugs, liquid crystal polycarbonates, and diblock copolymers to various biomimetic/bioinspired nanomaterials and their potential applications in nanopatterning, sensors/biosensors, drug delivery, anti-parasite, and water purification are demonstrated.
People's desire to understand the environments in which they live is a natural one. People spend most of their time in spaces and structures designed, built, and managed by humans, and it is estimated that people in developed countries now spend 90 percent of their lives indoors. As people move from homes to workplaces, traveling in cars and on transit systems, microorganisms are continually with and around them. The human-associated microbes that are shed, along with the human behaviors that affect their transport and removal, make significant contributions to the diversity of the indoor microbiome. The characteristics of "healthy" indoor environments cannot yet be defined, nor do microbial, clinical, and building researchers yet understand how to modify features of indoor environmentsâ€"such as building ventilation systems and the chemistry of building materialsâ€"in ways that would have predictable impacts on microbial communities to promote health and prevent disease. The factors that affect the environments within buildings, the ways in which building characteristics influence the composition and function of indoor microbial communities, and the ways in which these microbial communities relate to human health and well-being are extraordinarily complex and can be explored only as a dynamic, interconnected ecosystem by engaging the fields of microbial biology and ecology, chemistry, building science, and human physiology. This report reviews what is known about the intersection of these disciplines, and how new tools may facilitate advances in understanding the ecosystem of built environments, indoor microbiomes, and effects on human health and well-being. It offers a research agenda to generate the information needed so that stakeholders with an interest in understanding the impacts of built environments will be able to make more informed decisions.
Highly contiguous reference genome sequences are a prerequisite for genomics research and for the optimal utilization of plant species. However, whole-genome duplication events and subsequent chromosomal rearrangements and losses shape the complex features and extensive diversity of plant genomes, and hinder their highly contiguous assembly. With the advent of single-molecule, long-read sequencing technologies, such as PacBio High-Fidelity (HiFi) and Oxford Nanopore Technologies (ONT), as well as Bionano genomics and high-throughput chromatin conformation capture (Hi-C), many highly complex chromosome-level genomes have been revealed, even with phased haplotypes. These advanced sequencing technologies, coupled with improvements in assembly methods, have greatly improved the quality of the assembled genomes. Transcriptomics and metabolomics are playing an increasingly important role in research into genetic variation and functional genes, and enable their combination with other omics studies. For example, in studies of plant stress resistance, the application of transcriptomics and metabolomics technologies allows comprehensive and dynamic detection of the spatial and temporal changes in plant genes/metabolite expression under stress, enabling functional genes to be “mined” and the regulatory mechanism underlying stress responses to be analyzed, providing a molecular genetic basis for the breeding of stress-resistant varieties.
Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage that arises from radicals and reactive O2 species generated by Photosystem II chemistry. Consequently, to sustain water splitting, a “self repair” cycle has evolved whereby damaged protein is removed and replaced so as to extend the working life of the complex. Understanding how the biogenesis and repair processes are coordinated is among several important questions that remain to be answered. Other questions include: how and when are the inorganic cofactors inserted during the assembly and repair processes and how are the subcomplexes protected from photodamage during assembly? Evidence has also been obtained for Photosystem II biogenesis centers in cyanobacteria but do these also exist in plants? Do the molecular mechanisms associated with Photosystem II assembly shed fresh light on the assembly of other major energy-transducing complexes such as Photosystem I or the cytochrome b6/f complex or indeed other respiratory complexes? The contributions to this Frontiers in Plant Science Research Topic are likely to reveal new details applicable to the assembly of a range of membrane-protein complexes, including aspects of self-assembly and solar energy conversion that may be applied to artificial photosynthetic systems. In addition, a deeper understanding of Photosystem II assembly — particularly in response to changing environmental conditions — will provide new knowledge underpinning photosynthetic yields which may contribute to improved food production and long-term food security.
This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
Comprehensive Nanoscience and Technology, Second Edition, Five Volume Set allows researchers to navigate a very diverse, interdisciplinary and rapidly-changing field with up-to-date, comprehensive and authoritative coverage of every aspect of modern nanoscience and nanotechnology. Presents new chapters on the latest developments in the field Covers topics not discussed to this degree of detail in other works, such as biological devices and applications of nanotechnology Compiled and written by top international authorities in the field