Download Free Artificial Neural Networks In Cancer Diagnosis Prognosis And Patient Management Book in PDF and EPUB Free Download. You can read online Artificial Neural Networks In Cancer Diagnosis Prognosis And Patient Management and write the review.

The potential value of artificial neural networks (ANN) as a predictor of malignancy has begun to receive increased recognition. Research and case studies can be found scattered throughout a multitude of journals. Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management brings together the work of top researchers - primaril
The main aim of this book is to present a sample of recent research on the application of novel artificial intelligence paradigms to the diagnosis and prognosis of breast cancer. These paradigms include neural networks, fuzzy logic and evolutionary computing. Artificial intelligence techniques offer advantages — such as adaptation, fault tolerance, learning and human-like behavior — over conventional computing techniques. The idea is to combine the pathological, intelligent and statistical approaches to enable simple and accurate diagnosis and prognosis.This book is the first of its kind on the topic of artificial intelligence in breast cancer. It presents the applications of artificial intelligence in breast cancer diagnosis and prognosis, and includes state-of-the-art concepts in the field. It contains contributions from Australia, Germany, Italy, UK and the USA.
This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
This book encapsulates recent applications of CI methods in the field of computational oncology, especially cancer diagnosis, prognosis, and its optimized therapeutics. The cancer has been known as a heterogeneous disease categorized in several different subtypes. According to WHO’s recent report, cancer is a leading cause of death worldwide, accounting for over 10 million deaths in the year 2020. Therefore, its early diagnosis, prognosis, and classification to a subtype have become necessary as it facilitates the subsequent clinical management and therapeutics plan. Computational intelligence (CI) methods, including artificial neural networks (ANNs), fuzzy logic, evolutionary computations, various machine learning and deep learning, and nature-inspired algorithms, have been widely utilized in various aspects of oncology research, viz. diagnosis, prognosis, therapeutics, and optimized clinical management. Appreciable progress has been made toward the understanding the hallmarks of cancer development, progression, and its effective therapeutics. However, notwithstanding the extrinsic and intrinsic factors which lead to drastic increment in incidence cases, the detection, diagnosis, prognosis, and therapeutics remain an apex challenge for the medical fraternity. With the advent in CI-based approaches, including nature-inspired techniques, and availability of clinical data from various high-throughput experiments, medical consultants, researchers, and oncologists have seen a hope to devise and employ CI in various aspects of oncology. The main aim of the book is to occupy state-of-the-art applications of CI methods which have been derived from core computer sciences to back medical oncology. This edited book covers artificial neural networks, fuzzy logic and fuzzy inference systems, evolutionary algorithms, various nature-inspired algorithms, and hybrid intelligent systems which are widely appreciated for the diagnosis, prognosis, and optimization of therapeutics of various cancers. Besides, this book also covers multi-omics exploration, gene expression analysis, gene signature identification of cancers, genomic characterization of tumors, anti-cancer drug design and discovery, drug response prediction by means of CI, and applications of IoT, IoMT, and blockchain technology in cancer research.
Advanced conceptual modeling techniques serve as a powerful tool for those in the medical field by increasing the accuracy and efficiency of the diagnostic process. The application of artificial intelligence assists medical professionals to analyze and comprehend a broad range of medical data, thus eliminating the potential for human error. Medical Diagnosis Using Artificial Neural Networks introduces effective parameters for improving the performance and application of machine learning and pattern recognition techniques to facilitate medical processes. This book is an essential reference work for academicians, professionals, researchers, and students interested in the relationship between artificial intelligence and medical science through the use of informatics to improve the quality of medical care.
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines. Features • Covers the fundamentals, history, reality and challenges of cancer • Presents concepts and analysis of different cancers in humans • Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer • Offers real-world examples of cancer prediction • Reviews strategies and tools used in cancer prediction • Explores the future prospects in cancer prediction and treatment Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions. This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
Breast cancer is one of the most common cancers among women worldwide, representing the majority of new cancer cases and cancer-related deaths according to global statistics, making it a significant public health problem in today's society. Thus, the correct diagnosis of breast cancer and classification of patients into malignant or benign groups is the subject of much research. The objective of this paper is to review machine learning techniques and their applications in breast cancer diagnosis and prognosis. Because of its unique advantages in critical features detection from complex breast cancer datasets, machine learning is widely recognised as the methodology of choice in breast cancer pattern classification and forecast modelling. This paper provides an overview of machine learning techniques including artificial neural networks, support vector machines, decision trees, and k-nearest neighbours. Then, it investigates their applications in breast cancer. The primary data is drawn from the Wisconsin breast cancer database which is the benchmark database for comparing the results through different algorithms. Finally, a healthcare system model is also shown.
This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.