Download Free Artificial Intelligence In Geography Book in PDF and EPUB Free Download. You can read online Artificial Intelligence In Geography and write the review.

This unique work introduces the basic principles of artificial intelligence with applications in geographical teaching and research, GIS, and planning. Written in an accessible, non-technical and witty style, this book marks the beginning of the Al revolution in geography with major implications for teaching and research. The authors provide an easy to understand basic introduction to Al relevant to geography. There are no special mathematical and statistical skills needed, indeed these might well be a hindrance. Al is a different way of looking at the world and it requires a willingness to experiment, and readers who are unhindered by the baggage of obsolete technologies and outmoded philosophies of science will probably do best. The text provides an introduction to expert systems, neural nets, genetic algorithms, smart systems and artificial life and shows how they are likely to transform geographical enquiry. A major methodological milestone in geography The first geographical book on artificial intelligence (Al) No need for previous mathematical or statistical skills/knowledge Accessible style makes a difficult subject available to a wide audience Stan Openshaw is one of the world? s leading researchers into geographical computing, spatial analysis and GIS.
This open access book explores machine learning and its impact on how we make sense of the world. It does so by bringing together two ‘revolutions’ in a surprising analogy: the revolution of machine learning, which has placed computing on the path to artificial intelligence, and the revolution in thinking about the law that was spurred by Oliver Wendell Holmes Jr in the last two decades of the 19th century. Holmes reconceived law as prophecy based on experience, prefiguring the buzzwords of the machine learning age—prediction based on datasets. On the path to AI introduces readers to the key concepts of machine learning, discusses the potential applications and limitations of predictions generated by machines using data, and informs current debates amongst scholars, lawyers and policy makers on how it should be used and regulated wisely. Technologists will also find useful lessons learned from the last 120 years of legal grappling with accountability, explainability, and biased data.
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Decision makers, such as government officials, need to better understand human activity in order to make informed decisions. With the ability to measure and explore geographic space through the use of geospatial intelligence data sources including imagery and mapping data, they are better able to measure factors affecting the human population. As a broad field of study, geospatial research has applications in a variety of fields including military science, environmental science, civil engineering, and space exploration. Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications explores multidisciplinary applications of geographic information systems to describe, assess, and visually depict physical features and to gather data, information, and knowledge regarding human activity. Highlighting a range of topics such as geovisualization, spatial analysis, and landscape mapping, this multi-volume book is ideally designed for data scientists, engineers, government agencies, researchers, and graduate-level students in GIS programs.
This new resource presents the principles and applications in the emerging discipline of Activity-Based Intelligence (ABI). This book will define, clarify, and demystify the tradecraft of ABI by providing concise definitions, clear examples, and thoughtful discussion. Concepts, methods, technologies, and applications of ABI have been developed by and for the intelligence community and in this book you will gain an understanding of ABI principles and be able to apply them to activity based intelligence analysis. The book is intended for intelligence professionals, researchers, intelligence studies, policy makers, government staffers, and industry representatives. This book will help practicing professionals understand ABI and how it can be applied to real-world problems.
This open access book offers a summary of the development of Digital Earth over the past twenty years. By reviewing the initial vision of Digital Earth, the evolution of that vision, the relevant key technologies, and the role of Digital Earth in helping people respond to global challenges, this publication reveals how and why Digital Earth is becoming vital for acquiring, processing, analysing and mining the rapidly growing volume of global data sets about the Earth. The main aspects of Digital Earth covered here include: Digital Earth platforms, remote sensing and navigation satellites, processing and visualizing geospatial information, geospatial information infrastructures, big data and cloud computing, transformation and zooming, artificial intelligence, Internet of Things, and social media. Moreover, the book covers in detail the multi-layered/multi-faceted roles of Digital Earth in response to sustainable development goals, climate changes, and mitigating disasters, the applications of Digital Earth (such as digital city and digital heritage), the citizen science in support of Digital Earth, the economic value of Digital Earth, and so on. This book also reviews the regional and national development of Digital Earth around the world, and discusses the role and effect of education and ethics. Lastly, it concludes with a summary of the challenges and forecasts the future trends of Digital Earth. By sharing case studies and a broad range of general and scientific insights into the science and technology of Digital Earth, this book offers an essential introduction for an ever-growing international audience.
This comprehensive handbook covers Geospatial Artificial Intelligence (GeoAI), which is the integration of geospatial studies and AI machine (deep) learning and knowledge graph technologies. It explains key fundamental concepts, methods, models, and technologies of GeoAI, and discusses the recent advances, research tools, and applications that range from environmental observation and social sensing to natural disaster responses. As the first single volume on this fast-emerging domain, Handbook of Geospatial Artificial Intelligence is an excellent resource for educators, students, researchers, and practitioners utilizing GeoAI in fields such as information science, environment and natural resources, geosciences, and geography. Features Provides systematic introductions and discussions of GeoAI theory, methods, technologies, applications, and future perspectives Covers a wide range of GeoAI applications and case studies in practice Offers supplementary materials such as data, programming code, tools, and case studies Discusses the recent developments of GeoAI methods and tools Includes contributions written by top experts in cutting-edge GeoAI topics This book is intended for upper-level undergraduate and graduate students from different disciplines and those taking GIS courses in geography or computer sciences as well as software engineers, geospatial industry engineers, GIS professionals in non-governmental organizations, and federal/state agencies who use GIS and want to learn more about GeoAI advances and applications.
Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience. The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work. - Provides practical, step-by-step guides for Earth Scientists who are interested in implementing AI techniques in their work - Features case studies to show real-world examples of techniques described in the book - Includes additional elements to help readers who are new to AI, including end-of-chapter, key concept bulleted lists that concisely cover key concepts in the chapter
"This book traces the recent history of geography, information, and technology through the biography of Edward A. Ackerman, an important but forgotten figure in geography's 'quantitative revolution.' It argues that Ackerman's work helped encode the hidden logics of a distorted philosophical heritage -- a dangerous, cybernetic form of thought known as militant neo-Kantianism -- into the network architectures of today's pervasive worlds of surveillance capitalism"--